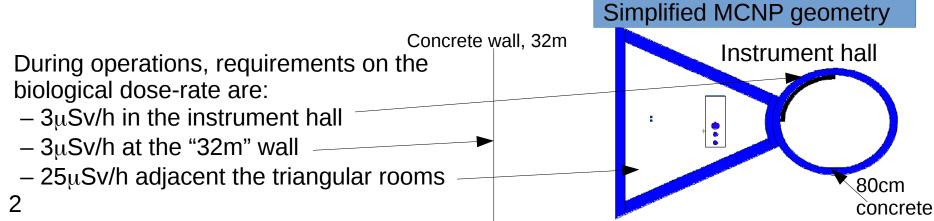
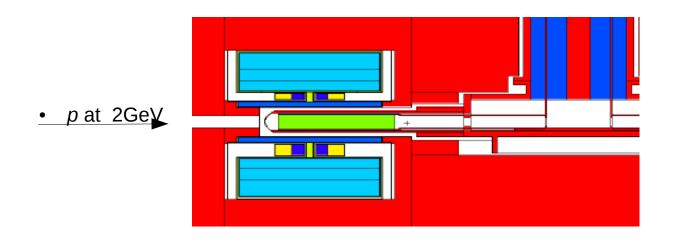
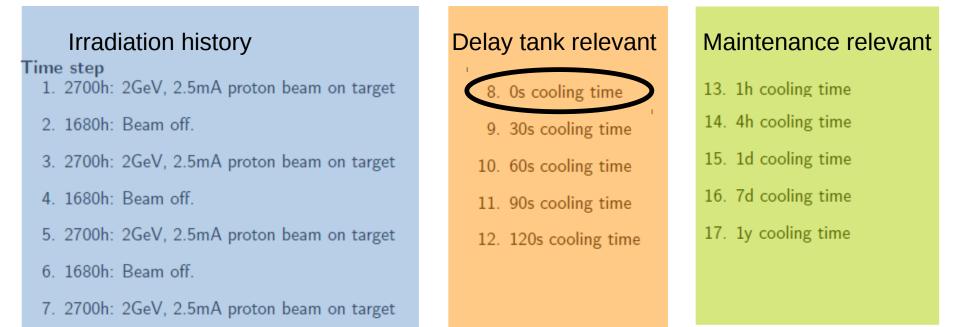

Radiation challenges of primary cooling return water at the ESS


Esben Klinkby ESS & DTU

ARIA'17, Lund, 22th – 24th May 2017


Water circuit overview

Source term


 Using the MCNP Master Model, all water cells in the reflector plug are combined including impurities*, and the activity is calculated at different times using CINDER'90 (v1.05)

Methods

EUROPEAN SPALLATION SOURCE

• Activity is calculated at different times using CINDER'90 (v1.05)

- Source term prepared for each time step using gamma script
- Gamma transport calculations results in biological dose-rate maps using ICRP-116 fluence-to-dose conversion factors
- *Full source term* describes the total activity resulting from 2years of running.
 - A good representation of the long lived isotopes.

4

 Modeling is static => depending on subsystem: full source term is a poor representation of the short lived

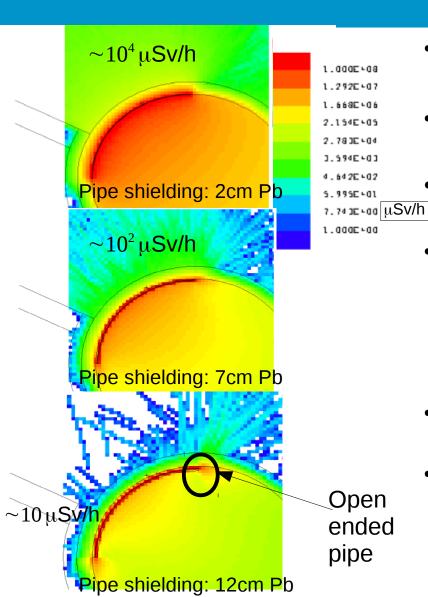
Inventory

	Isotope	Half-life [s	Decay	Time ste	ep	Time ste	p Time ste	p Time ste	ep Time step	
Relevant for delay tank		[s]	mode	8 [0s]	9 [30s]		10 [60s] 11 [90s] 12 [120s]	
	³ Н	3.89E8	β	621.3	3 621.3		621.3	621.3	621.3	
	⁷ Be	4.61E6	$ECeta + \gamma [477keV]$	/] 445.1		445.1	445.1	445.1	445.1	
	¹¹ C	1223	β	1473		1449	1424	1400	1377	
	¹⁴ 0	70.6	$\beta + \gamma [2.3 MeV]$] 92.3	92.3 69.4		51.7	38.5	28.7	
	¹⁵ 0	122	β	4511	3827		3228	2723	2297	
	¹⁶ N	7.1	$\beta + \gamma [6.1 MeV]$] 4462		266.1	14.4	0.8	0.04	
	Total			12380		7161	6234	5657	5180	
	Inchase		Deeres	Times stars	.		Time star I	Time stars I	Time star	
Relevant for maintenance	Isotope	Half-life	Decay	Time step		me step	Time step	Time step		
		[s]	mode	13 [1h]		4 [4h]	15 [1d]	16 [7d]	17 [1y]	
	³ H	3.89E8	$oldsymbol{eta}$	621.3	(621.3	621.2	620.6	587.3	
	⁷ Be	4.61E6	$ECeta + \gamma[477keV]$	444.9	4	444.2	439.4	406.4	3.9	
	¹¹ C	1223	eta	191.6						
	¹⁴ 0	70.6	$\beta + \gamma [2.3 MeV]$							
	150	122	$\overline{\beta}$							
	Total			1270		1070	1060	1030	592	

Activities in Curie. Only main contributers listed - "Total" includes all

The first few minutes, ¹⁶N is the most problematic nuclide. At later times ⁷Be

Strategy:


follow the water from the reflector and through the various subsystems of the water circuit.

At each component, adjust shielding to reach requirements for biological dose level

Follow the water: 1 - connection cell

EUROPEAN SPALLATION SOURCE

- At ~few seconds of cooling, the dominant isotope is ${}^{16}N$ with T_{1/2} = 7s and 6.1MeV gamma
- The pipe constitute a serious challenge, due to it's vicinity to the instrument hall
- *Full source term* at t_{cooling}=0 is placed in the pipe following the circumference
- Over-conservative since:
 - The volume of 15m of pipe is only half the moderator volume => only a fraction of the full source term is at play
 - The flow speed is 2m/s => cooling time is
 ~5s to ~10s
- Nevertheless, the pipe at the thin instrument hall facing wall is problematic =>
- Work is ongoing to re-route / shield the pipe

<u>2 – delay tanks</u>

- 91 of water in the moderator, Exhaust speed 0.6L/s => average cooling time at exit: 7.5s.
- 5m vertical + 5m horizontal: 5s
- Starting at $t_{cooling}$: 7.5s+5s = 13s, the delay tank is modeled:

Cooling time [s]	13	16	19	22	25	28	31	34	37
Source weight [%]	12	12	12	12	12	12	12	12	4

μSv/h DT shielding: 18cm Pb 10⁹ 10⁸ 107 μSv/h 10⁶ 10² 10⁵ 10⁴ 10³ 10 hall

DT shielding: 10cm Pb

DT shielding: 14cm Pb

 $\sim 10 \, \mu \text{Sv/h}$

~50 սSv/h

도 ¹²⁰⁰ × 1000

800

600

400

200

-200

-400

-600

등 ¹²⁰⁰ × 1000

800

600

400

200

-200

400

등 ¹²⁰⁰ × 1000

800

600

400

200

0

-200

-400

-600

-400

-800

-600

-400

2μ**Sv/h**

-200

0

200

400

600

800

z [cm]

-200

0

_{10°} μSv/h

10⁸

 10^{7}

10⁶

10⁵

104

10³

10²

10

10⁹

10⁸

10⁷

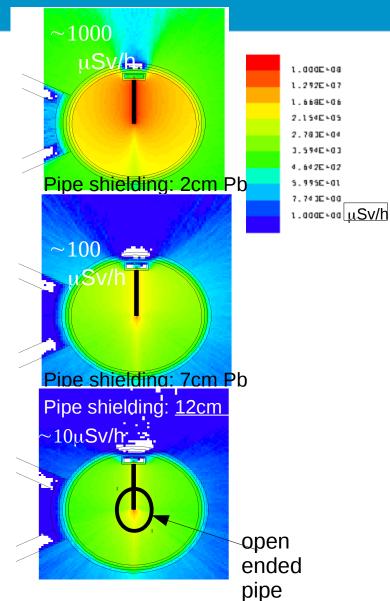
10⁶

10⁵

104 10³

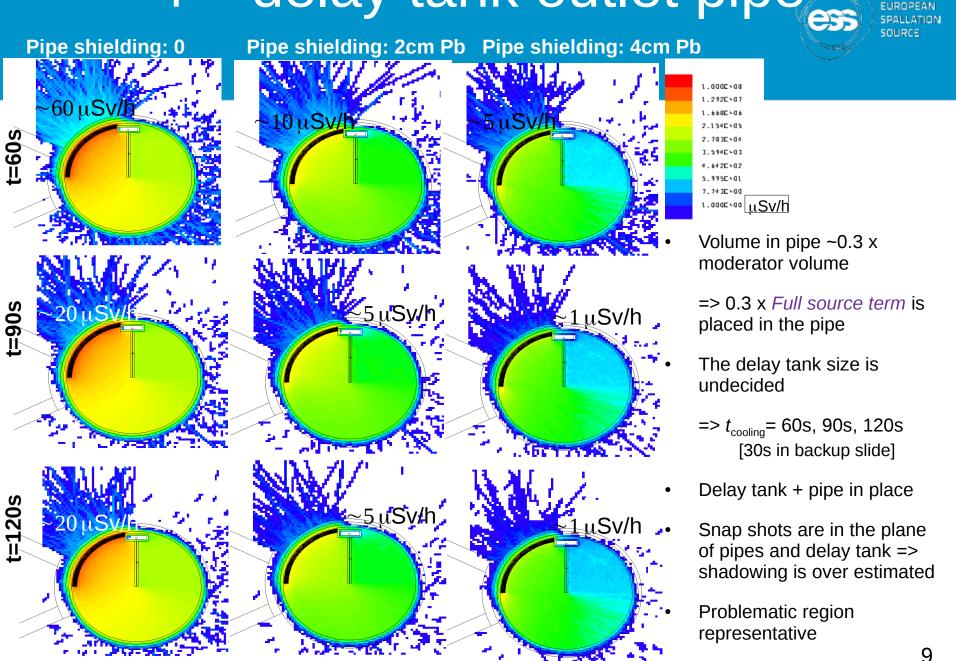
10²

սSv/h


800

- I.e. CINDER'90 is re-run, to prepare source definitions. For each shielding geometry, 9 separate MCNP simulations are performed and the resulting dose-rate maps added
- ~18cm lead needed to reach doselevel requirements in the instrument

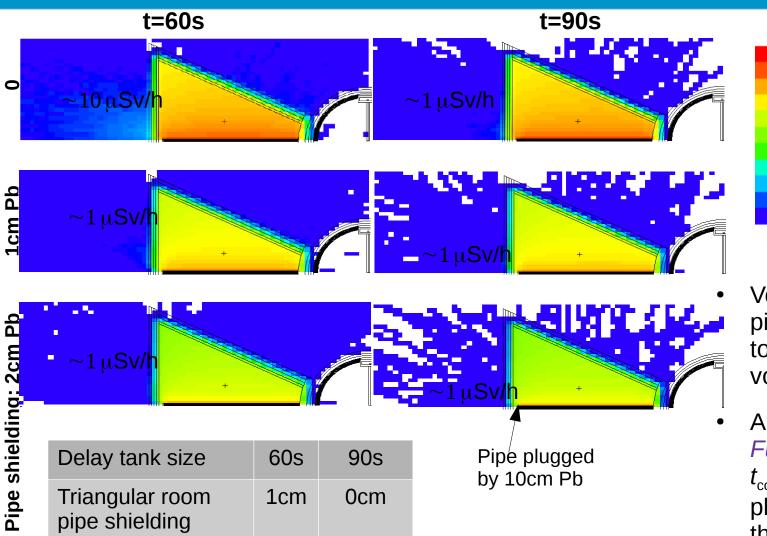
3 – piping in the connections cell



- Volume in pipe ~1/6 moderator volume
 - => 1/6 x Full source term at $t_{cooling}$ =0 is placed in the pipe
- Conservative: no cooling
- <u>~12cm lead needed</u> to ensure sufficiently low dose levels in the instrument hall


4 – delay tank outlet pipe

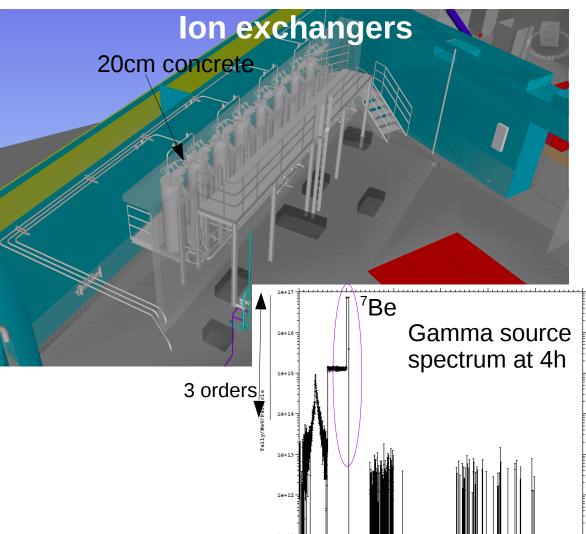
4 – delay tank outlet pipe


EUROPEAN SPALLATION SOURCE

• Shielding requirements on the outlet pipe depend on the size of the delay tank

5 – triangular rooms: pipes

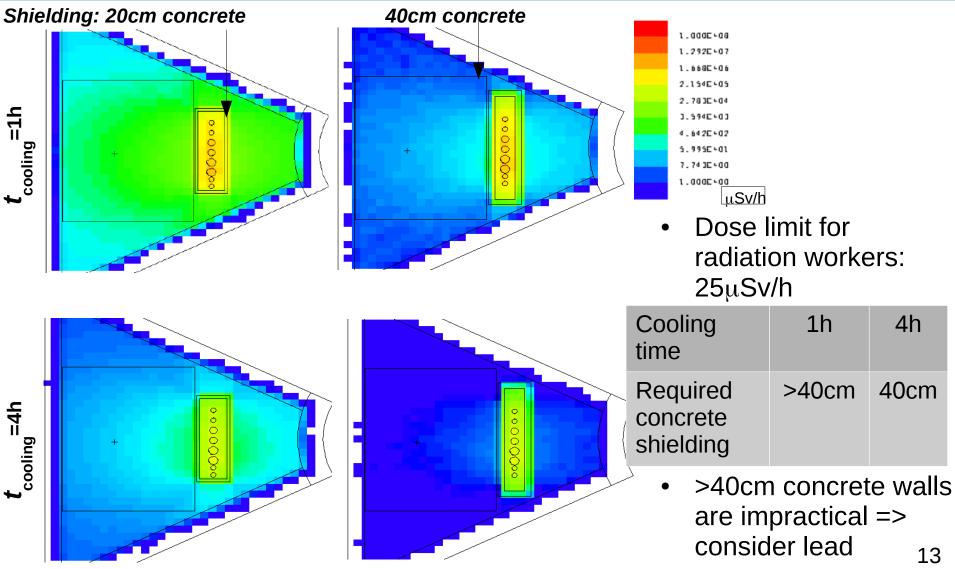
1.000E+08


- Volume in 30m pipe corresponds to the moderator volume
- Approach: Place *Full source term* at $t_{cooling}$ =60s, 90s is placed in a pipe in the triangular room

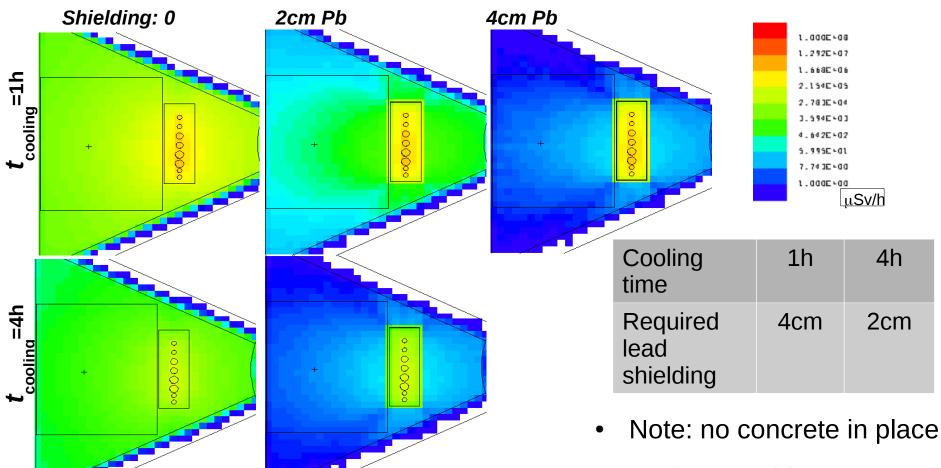
6 – triangular rooms: maintenance

EUROPEAN SPALLATION SOURCE

- Cooling time expected prior to entering the triangular rooms for maintenance
- At 1-4 hours, ⁷Be dominant
- ⁷Be should not be dissolved in water, but filtered in ion exchangers situated behind 20cm concrete [baseline]
- Approach: *Full source term* at t_{cooling} =1h, 4h in placed in rectangular concrete shielding box



0.5


Energy (MeV)

6 – triangular rooms: maintenance

EUROPEAN SPALLATION SOURCE

6 – triangular rooms: maintenance

 Option: combine concrete and lead

SPALLATION SOURCE

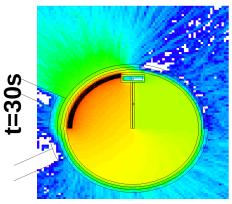
Conclusions

UROPEAN PALLATION DURCE

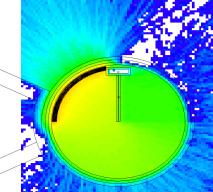
- The radiation from primary cooling water circuit is modeled in a simplified geometries.
- For each subsystem of the circuit the shielding needed to reach the required biological dose limits are calculated
- Under the assumption that the delay tank is moved into the connection cell, the results can be summarized as follows:
 - Delay tank inlet pipe Pb shielding : ~12cm
 - Delay tank Pb shielding : ~18cm
 - Delay tank outlet pipe Pb shielding : ~2cm [for 90s DT]
 - Pipe Pb shielding in triangular rooms : ~0cm [for 90s DT]
 - Shielding in triangular rooms
 - required for maintenance : 1 hour cooling: >40cm concrete / 4cm lead
 - : 4 hour cooling: 40cm concrete / 2cm lead

- It is recommend that:
 - Delay is moved in connection cell. Size 90s, At least 18cm of lead toward instrument hall
 - The ion exchanger walls be made as thick as feasible, optionally lead mounted
 - Pipes in the connection cell are encapsulated in lead: 12cm for delay tank inlet, 2cm for outlet
- Final note: Ensure all contributers are accounted for: 3μ Si/h / 25μ Si/h is for everything

Backup slides

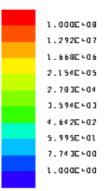


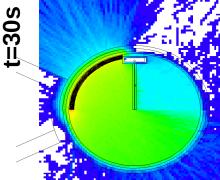
EUROPEAN SPALLATION SOURCE

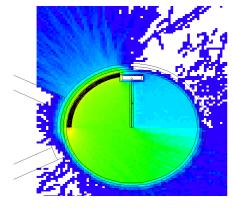


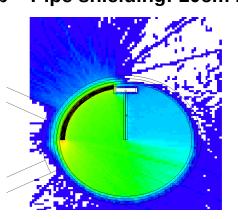
4 – delay tank outlet pipe - extra

Pipe shielding: 0

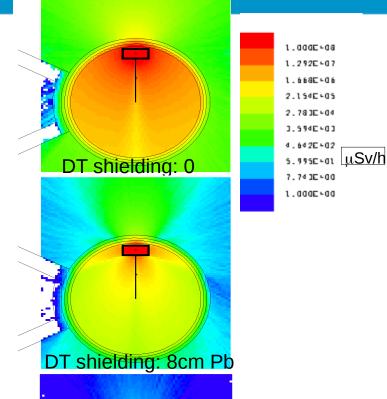

Pipe shielding: 2cm Pb


Pipe shielding: 8cm Pb


Pb Pipe shielding: 10cm Pb


Pipe shielding: <u>4cm Pb</u>

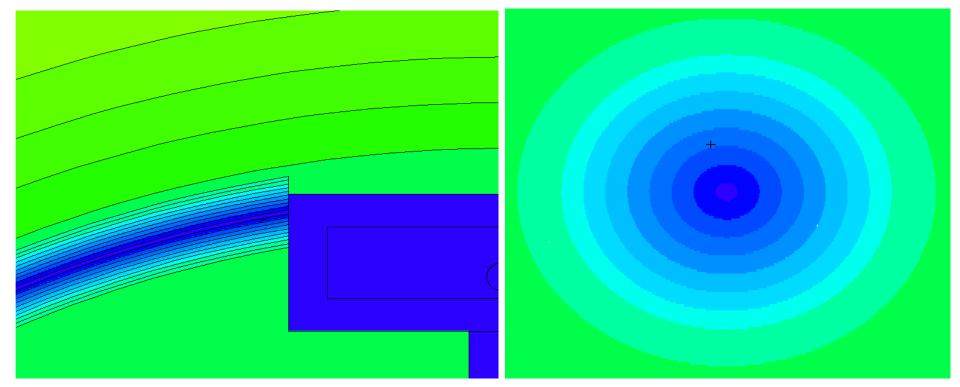
Pipe shielding: 6cm



2 – delay tanks

EUROPEAN SPALLATION SOURCE

DT shielding: 18cm P


- <u>Alterntive approach : Full source term</u> at $t_{\text{cooling}}=0$ is placed in the delay tank
- Conservative: neglects delay, water volume fraction
- The shielding on the room-facing size, may be relaxed – from a solid angle consideration ~ the dose level in the instrument hall is $\sim (1m/10m)^2$ lower, corresponding to ~4cm lead

Importance biasing

UROPEAN PALLATION OURCE

Importance doubled every 2cm in lead and 25cm in concrete

Zoom in of delay tank and outlet pipe[left] and pipe cross-section [right]. Colored by gamma importance.