

FISPACT-II & TENDL: developments to model high-energy activation, transmutation processes and radiation damage source terms

J-Ch. Sublet, M. Gilbert, M. Fleming and A.J. Koning¹

United Kingdom Atomic Energy Authority, Abingdon, United Kingdom ¹Nuclear Data Section, IAEA, Vienna, Austria

Energy Authoritv

57 La Lanthanum 138.905	58 Ce Cerium 140.116	59 Pr Praseodymium 140.908	60 Nd Neodymium 144.243	61 Pm Promethium 144.913	62 Sm Samarium 150.36	63 EU Europium 151.964	64 Gd Gadolinium 157.25	65 Tb Terbium 158.925	66 Dy Dysprosium 162.500	67 Ho Holmium 164.930	68 Erbium 167.259	69 Tm Thulium 168.934	70 Yb Ytterbium 173.055	71 LU Lutetium 174.967
89 Ac Actinium 227.028	90 Th Thorium 232.038	91 Pa Protactinium 231.036	92 U Uranium 238.029	93 Np Neptunium 237.048	94 PU Plutonium 244.064	95 Am Americium 243.061	96 Cm ^{Curium} 247.070	97 Bk Berkelium 247.070	98 Cf Californium 251.080	99 Es Einsteinium [254]	Fermium 257.095	101 Md Mendelevium 258.1	102 No Nobelium 259.101	103 Lr Lawrencium [262]

2

Z (number of protons)

TENDL: from MF-1 to MF-40, 200 MeV

- MF-1: Description + fission parameters
- MF-2: Resonance parameters (Reich-Moore or Multi-level Breit Wigner)
- \longrightarrow MF-3: Cross sections (n,tot), (n,el), (n,non), (n,inl_i), ..., (n, γ), (n,p_i), (n, α_i)
- MF-4: Elastic angular distribution (Legendre Polynomials)
- MF-5: Fission neutron spectrum
- Solution MF-6: Double differential distributions and spectra for (n,2n), ..., (n, α_i)
- MF- 8-10: Isomeric cross sections
- MF-12-15: Gamma yields, angular distributions and spectra
- MF- 31-32-33-34-35, 40: nubar, Resonance parameter, cross section, angular distribution and fission neutron spectrum, radionuclide production.

- T6: at the origin of TENDL: combination of 6 codes plus utilities
- Allow to loops over nuclear science → variance-covariance

TENDL's advantages

- All targets isotopes in the same evaluated data forms, 10^{-5} eV to 200 MeV, with variance-covariance (MF-31 to 40), isomers as target (T_{1/2} > 1 s) <u>and</u> daughters (T_{1/2} > 0.1 s)
- 8th version, "putting 69 nuclear physics codes to work"

	Neutron,	Q'I'	Deuteron,	Internal Prices	Albha	Heliun3	A A A A A A A A A A A A A A A A A A A	Fi. Lel.	Covariantes	
TENDL-2015	2809	2804	2804	2803	2804	2804	2804	16	2805	
TENDL-2014	2632	2629	2629	2629	2629	2629	2629	-	2632	
TENDL-2013	2630	2625	2625	2625	2624	2624	2626	-	2630	
TENDL-2012	2435	2429	2428	2348	2429	2429	2430	-	2338	
TENDL-2011	2425	2429	2419	2431	2429	2428	2428	574	2416	
TENDL-2010	2394	1157	1159	1156	1159	1140	1152	529	1086	
TENDL-2009	2375	1163	1164	1116	1163	1127	1165	509	1141	
TENDL-2008	348	344	336	339	342	338	327		342	
(JEFF-3.2)	472								218	
(ENDF/B-VII.1)	423	47	5	3		2	163	80	146	
(JENDL-4.0)	406								90	

The TENDL infrastructure combines other methods:

- (fast) TMC: Total Monte Carlo for uncertainty propagation
- <u>BMC</u>: Bayesian Monte Carlo for model parameter updates and sampling

<u>HFR</u>: Resonance parameters
for all targets isotopes consistent
with the fast neutron range : Level
Densities, Optical Model Parameters,
Gamma-ray Strength Function,...

Processing steps: three codes

cross-check

ENDF file

- NJOY12-082
 - reconr
 - broadr
 - unresr
 - thermr
 - heatr
 - gaspr
 - purr
 - acer
 - groupr

- **PREPRO-2015**
 - linear •

lacksquare

- cross-check recent
 - sigma1
 - sixpack
 - activate
 - merger
 - dictin
 - groupie

Processed ENDF file

- CALENDF-2010
 - calendf
 - regroutp
 - lecritp
 - **PT file** Single script for an entire
 - library

90 reaction types

(n, remainder) =mf3-mt5*mf6 above 30 MeV

TENDL-2015 pendf, below 30 MeV

Gas production

NJOY generated Gas production MT's displayed by PREPRO

NJOY generated KERMA and DPA MT's displayed by PREPRO

NJOY generated gas production MT's displayed by PREPRO

TENDL-2015 pendf from mf3*mf6

TENDL-2015 proton [Al27]

TENDL-2015 proton [Sn120]

PKA spectra – recoil matrices & vectors

PKA spectra – recoil matrices

W-184 TENDL example

W184 (n,a) Hf-181 He-4 10⁻¹ 10⁻² σ (barns) 10⁻³ 10⁻⁴ 10⁻⁵ 3.10⁷ 10⁻⁶ 2.10⁷ Incident Neutron energy lev 10⁵ Recoil energy (eV) 10^{7} 1.10⁷ $E_i = E$ alpha recoil

Q positive (7.3 MeV) means that the alpha energy can be much higher than the energy of the incident neutron

TENDL-2015 α -incident

Actinide decays and consequent (α ,Xn) reactions for reactor fuel materials UO₂, UC, UF₆, PuO₂ and PuF₄

Only two libraries for Alpha induced! 17 targets in JENDL

TENDL-2015 is also been used in fuel denaturing studies

TENDL-2015 p-incident up to GeV

Random walk uncertainty

Decay power: FNS JAERI

FNS-00 5 Min. Irradiation - Nb

- Neutron capture and other reactions are exothermic, allowing the reaction at any incident energy
- These reactions possess resonance structure which often determines reaction rate (aside from thermal spectra systems)
- Either the resonances have been measured, we statistically resolve them or (in non-TENDL) we get unphysical straight lines...

Astrophysics reaction rates

Nuclear data & KADoNiS

 The KADoNiS database includes some 357 nuclides over 11 Maxwellian-averaged temperatures for RR comparison

FISPACT-II 3.20

• Provide the user with the most sophisticated incident-particle nuclear data from the TENDL-2015, ENDF/B.VII.1, JENDL-4.0, CENDL-3.1 and JEFF-3.2 international libraries, which are complemented with the latest decay and fission yield data, including the most recent GEFY-5.2 libraries.

 Code features include self-shielding factors, broad temperature dependence, thin/thick target yields, robust pathway analysis, Monte-Carlo sensitivity and uncertainty quantification and propagation using full covariance data.

New features

Atomic

- Allows the user to specify any output gamma group structure for decay sources
- Now with the ability to use arbitrary (ebins) incident group structure
- FISPACT-II to output the uncertainty from all depletion processes for a set of specified nuclides
- Creates data outputs and plot scripts with break-downs for all individual dominant nuclides (as opposed to integral quantities)
 <u>http://fispact.ukaea.uk/</u>

- Understanding that nuclear data are pdf and not only σ ± $\Delta\sigma,$
- Develop T6 to include other evaluation tools ?
- 8000 isotopes (astrophysics)
- 1 GeV ?

Example of what happens when model goes to the neutron drip line (Hauser Feshbach is not applicable anymore)

Moving forward

- Completeness, predictability, simultaneity
 - 6 incident particles, number of targets, isomers (targets and daughters), energy range (10⁻⁵ eV to 200 MeV) total and partials cross section, with variance-covariance, double differential data, all emitted spectra (particles and recoils)
- Reliability, regularity, robustness
 - For all applications (not a particular one) extensive V&V: fission, fusion, astrophysics, medical, high energy, earth explorations, safeguard, safety, security, …
- The only nuclear data library able to go outside the proverbial validations domains (differential and integral), scout the nuclear landscapes, fulfil the (often difficult to specified) data needs