

A Monte Carlo study on neutron activation in neutron detectors with Ar/CO₂ counting gas

<u>E. Dian</u>, K. Kanaki, Sz. Czifrus, R. Hall-Wilton, P.Zagyvai

> dian.eszter@energia.mta.hu HAS Centre for Energy Research European Spallation Source ESS ERIC

> > 23 May 2017, ARIA17, Lund

- ESS: brightest spallation source
- High intensity:
 - Higher signal provided
 - Higher activation
 - Nuclear waste production
 - Activity emission
 - Gamma radiation: background for measurement and occupational exposure
- ³He replacement with B₄C-Ar/CO₂ detectors
 - New sources of activation:
 - Large volume Ar/CO₂
 - Aluminium frame

Activity study needed

- Ar activation is known as an issue in several areas:
 - Nuclear power plants
 - Research reactors
 - Accelerator tunnels

B. J. Jun, et al., Nuclear Engineering and Technology (2014) Vol. 42 (2).
M. Hoq, et al., Journal of Environmental Radioactivity 153 (2016) 68-72.
C. Rojas-Palma, et al., DOI: <u>10.1093/rpd/nch020</u>
B. Lauritzen, et al. Int. J. of Environmental and Pollution 20 (1-6) (2013) 47-54.
<u>https://www.cdc.gov/nceh/radiation/savannah/Chapter_04-3.pdf</u>
<u>https://digital.library.unt.edu/ark:/67531/metadc678287/</u>

- Permanent activity emission during normal operation
 - Airborne radionuclides
 - ⁴¹Ar main contributor:
 - thermal neutron capture in ⁴⁰Ar (99.3% in natural Ar)
 - Natural Ar in air or air dissolved in cooling water

Argon in presence of neutron have to be studied for activation

Few 1000 GBq/year activity release

mtacconstant Large area detectors at ESS with Ar/CO₂

- VOR, C-SPEC, T-REX @ ESS
 - Chopper spectrometers with large area detectors
 - Multi-Grid detector (*ILL/ESS/LU collaboration*): ${}^{10}B_4C$ converter based detector with Ar/CO₂
 - Continuous counting gas flow

Large Ar/CO₂ counting gas volumes exposed to neutron radiation (V~5-10 m³)

A. Khaplanov et al. <u>http://dx.doi.org/10.1016/j.nima.2012.12.021</u>

VOR

EUROPEAN SPALLATION SOURCE

4

- Neutron induced gamma background:
 - Prompt gamma
 - Decay gamma
- Activity production
- Activation study:
 - General Ar/CO₂ detector
 - Standard ESS operational conditions
 - MCNP6.1 simulation
 - Prompt gamma spectrum
 - Decay gamma calculation with Table of Isotopes
 - Analytical calculation:
 - Prompt: IAEA PGAA Database
 - Decay gamma calculation with Table of Isotopes

EUROPEAN

SOURCE

- Neutron induced gamma background:
 - Prompt gamma
 - Decay gamma
- Activity production
- Activation study:
 - General Ar/CO₂ detector
 - Standard ESS operational conditions
 - MCNP6.1 simulation
 - Prompt gamma spectrum
 - Decay gamma calculation with Table of Isotopes
 - Analytical calculation:
 - Prompt: IAEA PGAA Database
 - Decay gamma calculation with Table of Isotopes

- Neutron induced gamma background:
 - Prompt gamma
 - Decay gamma
- Activity production
- Activation study:
 - General Ar/CO₂ detector
 - Standard ESS operational conditions
 - MCNP6.1 simulation
 - Prompt gamma spectrum
 - Decay gamma calculation with Table of Isotopes
 - Analytical calculation:
 - Prompt: IAEA PGAA Database
 - Decay gamma calculation with Table of Isotopes

EUROPEAN

SOURCE

- Prompt gamma
- Decay gamma
- Activity production
- Activation study:
 - General Ar/CO₂ detector
 - Standard ESS operational conditions
 - MCNP6.1 simulation
 - Prompt gamma spectrum
 - Decay gamma calculation with Table of Isotopes
 - Analytical calculation:
 - Prompt: IAEA PGAA Database
 - Decay gamma calculation with Table of Isotopes

Cross section libraries

Standard operational conditions for ESS

10⁹ n/s scattered neutron

- Estimation of irradiating neutron flux
 - Various fluxes at sample position (VOR, T-REX, C-SPEC):
 conservative estimation: <u>10¹⁰ n/cm²/s</u>
 - 1-<u>10 %</u> scattering on sample
 - <u>1 cm²</u> sample surface
 - R = 100 cm smallest realistic sample-detector distance $\rightarrow 10^5 \text{ cm}^2$ sphere surface

UROPEAN PALLATION

- Ar/CO₂ detector model for simulation and calculation:
 - 10 x 10 x 10 cm³ gas cube
 - 5 mm thick aluminium frame, Al5754 alloy
 - r = 8.5 cm monoenergetic pencil beam
 - 0.6, 1, 1.8, 2, 4, 5, 10 Å
- t_{irr} = 10⁶ s irradiation time (typical spallation source operation cycle)
- $t_{cool} = 10^7$ s cooling/decay time

UROPEAN PALLATION

- Ar/CO₂ detector model for simulation and calculation:
 - 10 x 10 x 10 cm³ gas cube
 - 5 mm thick aluminum frame, Al5754 alloy
 - r = 8.5 cm monoeinergetic pencil beam
 - 0.6, 1, 1.8, 2, 4, 5, 10 Å
- t_{irr} = 10⁶ s irradiation time (typical spallation source operation cycle)
- $t_{cool} = 10^7$ s cooling/decay time

- Ar/CO₂ detector model for simulation and calculation:
 - 10 x 10 x 10 cm³ gas cube
 - 5 mm thick aluminium frame, Al5754 alloy
 - r = 8.5 cm monoenergetic pencil beam
 - 0.6, 1, 1.8, 2, 4, 5, 10 Å
- t_{irr} = 10⁶ s irradiation time (typical spallation source operation cycle)
- $t_{cool} = 10^7$ s cooling/decay time

EUROPEAN

SPALLATION SOURCE

mtake Activity build up in Ar/CO₂

EUROPEAN

SPALLATION SOURCE

mtaky Signal-to-(neutron-induced gamma ess background) Ratio

EUROPEAN

SPALLATION SOURCE

mtaket Activity build up in Al5754

1/1000 activity with 1 day cooling

EUROPEAN

SPALLATION

SOURCE

Neutron induced gamma signal is negligible in terms of SBR

Negligible activity emission from continuous gas flow with 1 day storage

Prompt and decay gamma yields and activity are determined for the whole energy range and available in an easy-to-scale form

E. Dian et al.

Neutron activation and prompt gamma intensity in Ar/CO₂-filled neutron detectors at the European Spallation Source <u>arXiv:1701.08117</u> submitted to ARI

- issue for neutron detectors, neutron activation has to be considered
- Simple and general MCNP6.1 model built for activation study
 - Proper cross section databases found
 - Analytical calculations can be replaced by simulation

mtaEC Summary

Thank you for your attention!

