ARIA4, ESS, 2017

Benchmark studies of spallation products in Curtarget irradiated by high-energy beavy jobs

Hee-Seock Lee

Leila Mokhtari Oranj, Nam-Suk Jung, Adim Lee, Dongbyun Kim Pohang Accelerator Laboratory(PAL)/POSTECH, KOREA lee@postech.ac.kr

- Introduction
- Radioactivity Estimation for High Energy Accelerator
- How to Benchmark at This Study
 - > Object experiments
 - Calculation methods
- Benchmarking Results on Thick Cu Target
 - Proton : 100, 230 MeV
 - Carbon, Argon : 100, 230, 400 MeV/n
 - ➤ Uranium : 500, 950 MeV/n

• Summary

- Three-year Project was carried out. (Leila's presentation)
 - "Development of Core Safety Technology for Large Accelerator Facility"
 - * Especially Rare Isotope Accelerator (RAON) was the main object of this study
- Benchmarking Study for Shielding Calculation
 - presented at SATIF13 & ICRS13
- Benchmarking Study for Radioactivity Estimation
 - presented at ARIA2017
 - "Radionuclide yields of proton-induced reactions on Bismuth up to 100 MeV" (By Leila Mokhtari Oranj)
 - "Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters" (By Arim Lee)

General Understanding:

- **Transport Code (including spallation)**
- + Inventory Code
- Modula Style
- All-in-one Style

• General Libraries for estimating Activation Process

Database	Number of isotopes	Origin of data						
ENDF/B-VII	3838	ENSDF, Nuclear Wallet Cards						
EAF-2010 (includes spin and ncertainties)	2233	ENSDF, NUBASE, JEF2.2, JEFF-3.1.1, Browne and Firestone, Nuclear Wallet Cards						
	2952	NUBASE, ENSDF, LNHB, UKHEDD-2.x,						
JEFF-0.1.1	3032	UKPADD-6.x						

Library	Incident particles	Procedure of generation						
PADF-2007	p	TALYS, ALICE/ASH, EXFOR						
HEAD-2009 (IEAF2009+HEPAD2009)	p, n	(Bertini,Isabel,INCL)*(Dresner,ABLA) CASCADE, CEM03, EXFOR global						
TENDL-2009	p, n, d, t, he3, α	TALYS (default and adjusted) Validated for integral isotope production crosssection						
EAF-2010	p, n, d	EXFOR+TALYS+IEAF+ALICE… evaluated						
JENDL-HE2007	p, n	ENDF/B-6+GNASH+ALICE-F +JAM/GEM+JQMD/GEM						
JEFF-3.1	p, n	For neutrons EAF-2003 reformatted For protons TALYS						

Library	Number of isotopes	Z range	Upper energy
EAF-2007	810	1 ~ 100	60 MeV
PADF-2007	2355	12 ~ 88	150 MeV
JENDL-HE2007	106	1~95	3 GeV
JEFF-3.1	26	20 ~ 83	200 MeV
TENDL-2009	2375	6~110	200 MeV
HEPAD-2008	682	1 ~ 84	1 GeV

• For High Energy Proton

• For High Energy Neutron

Library	Number of isotopes	Z range	Upper energy
EAF-2007	816	1~100	60 MeV
JENDL-HE2007	106	1~95	3 GeV
JEFF-3.1/A	774	1~100	20 MeV
MENDL-2	505	13 ~ 84	100 MeV
TENDL-2009	2375	6~110	200 MeV
IEAF-2009	682	1~84	1 GeV

Aspect of Government Authority

- Reliability
- Uncertainty Range
- All codes can give precise results only based on the including theoretical or experimental data even though those has large certainty.
- Authority require to prove the quality of each code used for analysis.

How to Benchmark at this study?

- Object Experimental Data
 - Experiments at HIMAC
 - Experiments at GSI
 - (proton) Experiments at KOMAC
- Combination of Transport Code and Inventory Code
 - MCNPX2.7+SP-FISPACT2007
 - PHITS 2.64+ Dchain-SP2001
 - FLUKA2011

Experimental Data (by Yashima)

- Performed at HIMAC
- Proton & Heavy lons
- Stack-type Cu target

Ionization

chamber

Benchmarked Conditions

Projectile Energy [MeV/n]	Target Dimension (w) × (h) × (t) mm
proton (100)	100 × 100 × 2.2
proton (230)	100 × 100 × 10.1
C (100)	100 × 100 × 1.2
C (230)	100 × 100 × 5.2
C (400)	100 × 100 × 10.1
Ar (230)	100 × 100 × 2.2
Ar (400)	100 × 100 × 5.2

Cu plate

• Considered Irradiation Information

Projectile Energy	Intensity	Irradiation	Time (min)	Target Thick	Range	
[MeV/n]	[particles/sec]	Short	Long	Short	Long	[g/cm ²]
Ar (230)	2.78 × 10 ⁸	60	444	10	.68	6.07
Ne (230)	5.03 × 10 ⁸	61	364	9.89	14.62	9.79
C (230)	1.84 × 10 ⁹	36	359	14.51	19.24	16.29
He (230)	9.15 × 10 ⁹	21	304	55	48.86	
p (230)	2.28 × 10 ¹⁰	10	312	55	48.86	
Ne (100)	7.40 × 10 ⁸	31	366	5.06		2.37
C (100)	1.95 × 10 ⁸	60	405	6.	22	3.93
He (100)	1.05 × 10 ⁹	48	360	14	.79	11.76
p (100)	2.04 × 10 ¹⁰	46	301	14	.79	11.75
Ar (400)	2.37 × 10 ¹⁰	61	489	24.	080	14.90
Ne (400)	7.62 × 10 ⁸	60	463	33.	539	24.09
C (400)	1.77 × 10 ⁹	58	457	55.	599	40.13
Si (800)	2.60 × 10 ⁸	61	435	64.	529	48.92

Experimental Data (at GSI)

- 500 MeV/n U-238 + Cu
 - Beam : 500 MeV/n, Φ=0.8 cm
 - Irradiation : 20 hours, 6.472×10^6 pps
 - Foil thickness : 1 mm (purity 99.995%, 8.92 g/cm³) 0.5 mm (purity 99.9%, 8.96 g/cm³)
 - Number of targets/samples : 23/12
 - Total length of stacks : 1.07 cm
 - Benchmarking radionuclide :Sc-46, Cr-51,
 - Mn-52, 54, Fe-59, Co-56, 57, 58
- 950 MeV/n U-238 + STS
 - Beam : 950 MeV/n, Φ=0.8 cm

- Irradia Geometrical configuration of the stainless steel target – foil number and its thickness

			0					
	Foil number	1	2	3	4	5	6	7
	Foil thickness (mm)	0.11	0.49	1.03	0.49	1.98	0.49	1.98
— •• ••	Foil number	8	9	10	11	12	13	14
Foil th	Foil thickness (mm)	0.50	1.98	0.50	1.99	0.49	1.03	0.49
	Foil number	15	16	17	18	19	20	21
	Foil thickness (mm)	0.56	0.42	0.49	0.49	0.49	1.98	0.49
	Foil number	22	23	24	25	26	27	28
	Foil thickness (mm)	1.98	0.49	1.98	0.49	5.12	0.49	5.10
	Foil number	29	30	31	32	33	34	35
	Foil thickness (mm)	0.49	20.06	0.49	20.06	0.49	20.07	0.49
	Foil number	36	37	38	39	40		
	Foil thickness (mm)	20.04	0.50	20.06	1.03	0.49		

The target consisted of 40 foils. The overall target thickness was 138.4 mm. The foil thickness was measured by an electronic micrometer in several foil points. Average values are given in the table. The foils thinner than 1 mm were used for gamma-spectroscopy measurements to sample the depth-profile of residual activity. The foils thicker than 1 mm defined the distance between sampling-points.

Experimental Data (at GSI)

- 950 MeV/n U-238 + STS
 - Beam : 950 MeV/n, Φ=0.8 cm
 - Irradiation : 28.08 hours,
 - $8.586 \times 10^{5} \text{ pps}$
 - Foil thickness :
 - Number of targets/samples : 17/23
 - Total length of stacks: 138.39 cm
 - Benchmarking radionuclide: Mn-54, Co-58

• Experiment Records of GSI

Year	Projectile	Energy [MeV/n]	Target
2003	C-12	200, 300, 400	STS, Cu
2005-2006	U-238	120, 500, 950	STS, Cu
2009	Ar-40	500, 1000	Cu, Al
2008	U-238	1000	STS
2010	U-238	500, 950	AI
2014	Ta-181, U-238	500	С

Calculation Details in MC codes

	MCNPX 2.7.0									
	(Cr	≤ 20 MeV ross section library)	ENDF-VII							
Neutron transport	> 20 MeV	Cascade	Bertini							
	(Physics model)	Evaporation	Dresner-RAL							
	Tally ty	уре	Volume flux (F4 tally)							
	Neutron ener	rgy group	VITAMIN-J (175 group)							
		SP-FISPACT 2007								
	Cross section	on library	EAF-2010							

	PHITS 2.64									
	(Crc	≤ 20 MeV oss section library)	ENDF-VII							
Neutron transport	> 20 MeV	Cascade	INCL 4.6							
	(Physics model)	Evaporation	GEM							
	Tally typ	be	Volume flux (T-track)							
	Neutron energ	gy group	VITAMIN-J (175 group)							
		DCHAIN-SP 2001								
	Cross sectior	FENDL/A-2.0								

Benchmarking Results

SP-FISPACT → MCNPX2.7 + SP-FISPACT2007

DChain-SP → PHItS2.64 + Dchain-SP2001

FLUKA \rightarrow FLUKA2011.2c.x

Activation Profiles – Carbon beam

100 MeV/n C on Cu @ HIMAC

Hee-Seock Lee, PAL

Activation Profiles – Carbon beam

230 MeV/n C on Cu @ HIMAC

Hee-Seock Lee, PAL

Activation Profiles – Carbon beam

430 MeV/n C on Cu @ HIMAC

Hee-Seock Lee, PAL

ARIA4, ESS, Lund

Activation Profiles – Argon beam

230 MeV/n Ar on Cu @ HIMAC

Hee-Seock Lee, PAL

ARIA4, ESS, Lund

Activation Profiles – Argon beam

400 MeV/n Ar on Cu @ HIMAC

Hee-Seock Lee, PAL

ARIA4, ESS, Lund

Activation Benchmark – Heavy lons

Hee-Seock Lee, PAL

ARIA4, ESS, Lund

Activation – High Energy Uranium beam

500 MeV/n U-238 on Cu @ GSI

Hee-Seock Lee, PAL

ARIA4, ESS, Lund

Activation Profiles – Uranium beam

Experiment 0

- DCHAIN-SP 2001

SP-FISPACT / Experiment DCHAIN-SP / Experiment

100 110 120 130 140

Experiment

100

100

.

.

SP-FISPACT 2007

- DCHAIN-SP 2001

SP-FISPACT / Experiment

DCHAIN-SP / Experiment

120

FLUKA / Experiment

-FLUKA 2011.2c

120

140

140

FLUKA / Experiment

90

FLUKA 2011.2c

SP-FISPACT 2007

950 MeV/n U-238 on STS

70 80 90 100 110 120

70 80

80

80

Target depth [mm]

- > Calculations underestimate experimental data in most cases
- FLUKA shows better agreements with experimental data
- \succ The activation is not small in deep positions, which is different to results at HIMAC.

Target depth [mm]

100, 230 MeV/n P on Cu @ HIMAC

Part Revenue of Contract Revenue of Contract

- 100 MeV Proton
- At KOMAC
- MC comparison

Hee-Seock Lee, PAL

- Three MC methods of activity estimation were tested for high-energy heavy ion induced experimental data.
- In many cases of benchmarking, calculation results underestimate the measured data.
- No general trend, but FLUKA reproduced the measured data a little better, relatively.
- The level of discrepancy between each calculation and experimental data was in factor of 2 or 3
- This results can give practical users an idea of safety margin and a credit to their calculations.
- The latest version of MC codes and inventory codes may give better agreements, so those will be tested in near future.

Thanks for Your Attentions

Part Revenue of Contract Revenue of Contract

- 100 MeV Proton
- At KOMAC
- MC comparison

		Production yield ratio [calculation/measurement]																
		²⁰⁶ Bi		²⁰⁵ Bi			204 Bi			$^{203}\mathrm{Bi}$			²⁰² Bi			^{201g} Bi		
Proton energy [MeV]	FLUKA	MCNPX+SP-FISPACT	PHITS+DCHAIN-SP	FLUKA	MCNPX+SP-FISPACT	PHITS+DCHAIN-SP	FLUKA	MCNPX+SP-FISPACT	PHITS+DCHAIN-SP	FLUKA	MCNPX+SP-FISPACT	PHITS+DCHAIN-SP	FLUKA	MCNPX+SP-FISPACT	PHITS+DCHAIN-SP	FLUKA	MCNPX+SP-FISPACT	PHITS+DCHAIN-SP
101 ± 1.0	1.0	1.2	1.6	1.0	1.3	1.3	1.0	1.0	1.1	1.1	1.2	1.1	0.8	0.9	0.6	0.7	1.0	0.7
100 ± 1.0	1.1	1.4	1.6	1.1	1.3	1.4	1.0	1.0	1.0	1.1	1.2	1.0	0.7	0.7	0.5	_	-	
80±2.0	1.1	1.4	1.8	1.1	1.5	1.7	1.0	1.2	1.3	0.9	1.0	0.8	0.9	0.9	0.6	1.0	1.1	0.9
76±2.0	0.9	1.2	1.6	0.8	1.1	1.2	0.8	0.9	0.9	0.6	0.7	0.5	0.7	0.6	0.4	-	-	-
49±3.0	0.9	1.3	1.6	0.6	0.8	0.7	1.5	1.1	1.0	1.4	1.1	0.8	4.7	3.0	2.5	_	_	_

		Activity ratio [calculation/measurement]																		
Proton energy [MeV]	²⁰⁷ Po		²⁰⁶ Po		²⁰⁵ Po		204	Po	²⁰³ Po		²⁰⁷ Bi		²⁰⁶ Bi		²⁰⁵ Bi		204	Bi	203	Bi
	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS	FLUKA	MARS
100.5 ±0.5	0.9	0.9	0.9	0.9	1.1	1.0	1.2	1.3	0.6	0.8	0.8	0.7	0.9	0.9	0.7	0.8	0.9	1.1	1.1	1.2
91.8±1.0	0.9	0.9	1.0	0.9	0.8	0.8	1.0	1.0	0.5	0.5	0.7	0.8	0.9	0.9	0.8	0.9	0.9	1.1	1.2	1.2
82±1.5	0.9	0.9	0.8	0.9	0.7	0.8	0.7	0.7	0.5	0.5	0.8	0.8	1.0	1.0	0.9	1.0	1.1	1.3	1.3	1.1
72±2.0	0.7	0.8	0.6	0.7	0.4	0.4	0.6	0.5			0.8	0.8	1.0	1.1	0.9	1.0	2.3	2.0		
60±2.5	0.4	0.6			0.5	0.5					0.7	0.8			1.4	1.3				