

The Multi-Blade project

Boron-10-based detector for reflectometry instruments

Francesco Piscitelli

NSS seminar

2016/01/19

Outline

- Reflectometry
- Reflectometry at ESS: FREIA and ESTIA
- The Multi-Blade detector
- Forthcoming plans

Reflectometry: an introduction

Neutron beam Sample 0

Specular reflection I_0 incoming intensity θ (I_R s. refl. intensity θ (θ) θ detector sample

Langmuir–Blodgett trough

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings

Neutron beam Sample 0

Specular reflection I_0 incoming intensity θ ($R^{s. refl. intensity}$ θ (θ (θ) θ detector sample

Langmuir–Blodgett trough

To measure the reflected neutrons as a function of q

Neutron wavelength $q = (4\pi/\lambda) \sin(\theta)$ Incidence angle

q =($4\pi/\lambda$) sin(θ)

Reflectometry at ESS: FREIA and ESTIA

Reflectometry at ESS: FREIA and ESTIA

Horizontal Reflectometer (FREIA)

Suitable for liquids (limited angular range)

Vertical Reflectometer (ESTIA)

Not suitable for liquids More versatile (wide angle range)

FREIA

Estia

Freia, (Frejya, Freyia, Frøya, Frøjya, and Freja) in Old Norse the "Lady", one of the Vanir gods, rules over the heavenly afterlife field Fólkvangr and there receives half of those that die in battle.

FREIA – a reflectometer for kinetics and liquid surfaces

$q = (4\pi/\lambda) \sin(\theta)$

Langmuir–Blodgett trough

1.6

1.4

1.2

0.8

0.6

0.4

0.2

5

5.5 6

1

θ

3

2

1

0

λ/Å

7 7.5

6.5

8 8.5 9

Instrument	Facility	techn.	area	spatial res.	efficiency	global rate	local rate
			(mm imes mm)	(mm imes mm)		(s^{-1})	$(s^{-1}mm^{-2})$
FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\% @ 2.5 { m \AA}$	$3\cdot 10^7$	230
					$\sim 90\% @ 10 { m \AA}$		
					$\sim 80\% @ 30 { m \AA}$		
SuperADAM [11]	ILL	³ He	300×300	2.8 imes 2.8	$76\% @ 4.4 { m \AA}$	$2\cdot 10^5$	-
REFSANS [12]	FRM2	³ He	500×500	$\sim 2 \times 2$	$58\% @ 10 { m \AA}$	$2.2 \cdot 10^5$	300
					$\geq 50\% \in [5, 18]{ m \AA}$		
INTER [13]	ISIS	³ He, ⁶ Li	200×200	$\sim 1 \times 1$	-	-	-
POLREF [14, 15]	ISIS	³ He	200×200	$\leq 1 \times 1$	-	-	-
BIOREF [16]	HZB	³ He	300×300	2×3	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300
LR	SNS	³ He	200×200	1.3 imes 1.3	-	-	-
MR	SNS	³ He	210×180	1.5×1.5	-	-	-
Platypus [17]	OPAL	³ He	500×250	1.2×1.2	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300
SOFIA [18, 19]	J-PARC	³ He	128×128	2×2	-	-	300
		⁶ Li	256×256	4×4	-	-	300

The state of the art

The state of the art

	Instrument	Facility	techn.	area		spatial res.	efficiency	global rate	local rate	Ī
				$(mm \times m)$	m)	(mm imes mm)		(s^{-1})	$(s^{-1}mm^{-2})$	
	FIGARO [9]	ILL	³ He	512×25	66	$\sim 2 \times 7.5$	$\sim 63\%$ @ 2.5Å	$3\cdot 10^7$	230	
							$\sim 90\% \otimes 10A$			
	SuperADAM [11]	TT T	3110	200 × 20	0	00000	$\sim 80\% @ 30A$	0 10 ⁵		
	DEESANS [12]	TLL FDM9	не ³ Цо	300×30 500 \times 50		2.0×2.0	70% @ 4.4A 58% @ 10Å	$2 \cdot 10$ 2.2.10 ⁵	- 300	
	REFORMS [12]	r miniz	me	300 X 30		\sim 2 \times 2	$> 50\% \in [5, 18]$ Å	2.2 . 10	300	
	INTER [13]	ISIS	³ He, ⁶ Li	200×20	0	$\sim 1 \times 1$	-	-	-	
	POLREF [14, 15]	ISIS	³ He	200×20	0	$\leq 1 \times 1$	-	-	-	
	BIOREF [16]	HZB	³ He	300 imes 30	0	2×3	$\sim 60\%$ @ 10Å	$2 \cdot 10^5$	300	
	LR	SNS	³ He	200×20)0	1.3 imes 1.3	-	-	-	
	MR	SNS	³ He	210×18	3 0	1.5 imes 1.5	-	-	-	
	Platypus [17]	OPAL	³ He	500×25	5 0	1.2×1.2	$\sim 60\% @ 10 { m \AA}$	$2 \cdot 10^5$	300	
	SOFIA [18, 19]	J-PARC	°He	128×12	8	2×2	-	-	300	
				256×25	00	4×4	-	-	300	
FREIA	Max rate on det	ector (at p	beak)		10 [:]	⁵ n/s/Å/mm ²			×300)
	Max global rate				12 12	MHz (1.2x100 MHz (detecto	0mm² footprint*) or area*)		Flux	at detector
	Wavelength rang	ge			2.5 – 12 Å (optional up to 25Å)					
	Efficiency				>60% (above 4Å)					
	Max detector siz	ze			500	0x500mm ²				
	Spatial resolutio	n			4m	ım x 1mm				
	Sample-Detecto	or distance	e		No	ot fixed (most	ly 3m)			
	Window scatteri	ing			<1	0-4				

The state of the art

	Instrument	Facility	techn.	area		spatial res.	efficiency	global rate (z^{-1})	$\left \begin{array}{c} \text{local rate} \\ (z^{-1} - z^{-2}) \end{array} \right $	Ī
		TT T	3110	$(mm \times m)$	(m)	$(mm \times mm)$	6207 @ 2 K Å	(s^{-1})	(s *mm *)	6
	FIGARO [9]	ILL	пе	312 X 28	00	$\sim 2 \times 7.5$	$\sim 03\% \otimes 2.5 \text{A}$ $\sim 90\% \otimes 10 \text{\AA}$	3.10	230	
							$\sim 80\% @ 30 \text{\AA}$			
	SuperADAM [11]	ILL	³ He	300×30)0	2.8 imes 2.8	$76\%@4.4{ m \AA}$	$2 \cdot 10^5$	-	
	REFSANS [12]	FRM2	³ He	500×50)0	$\sim 2 \times 2$	58% @ 10Å	$2.2 \cdot 10^5$	300	
	INTED [12]	ICIC	³ Uo ⁶ I ;	200 × 20	0		$\geq 50\% \in [5, 18]A$			ł
	POLREF [14 15]	ISIS	пе, ш ³ Не	200×20 200×20	0	$\sim 1 \times 1$ $< 1 \times 1$	-	-	-	ŀ
	BIOREF [16]	HZB	³ He	300×30)0	2×3	$\sim 60\%$ @ 10Å	$2\cdot 10^5$	300	ſ
	LR	SNS	³ He	200×20)0	1.3 imes 1.3	-	-	-	-
	MR	SNS	³ He	210×18	30	1.5 imes 1.5	-		-	
	Platypus [17]	OPAL	³ He	500×25	50	1.2×1.2	$\sim 60\% \ $ @ 10Å	$2 \cdot 10^5$	300	
	SOFIA [18, 19]	J-PARC	⁶ He	128×12 256 $\times 28$	28 56	2×2 4×4	-	-	300 300	
			11	200 × 20		F ^ F		_	500	1
						- ° -	1			
FREIA	Max rate on det	ector (at p	beak)		10 [:]	⁵ n/s/A/mm ²	↓		x 300	
	Max global rate				12 MHz (1.2x100mm ² footprint*) 12 MHz (detector area*)				Flux	at detector
	Wavelength rang	ge			2.5 – 12 Å (optional up to 25Å)					
	Efficiency			>60% (above 4Å)						
	Max detector siz	ze			50	0x500mm ²				
	Spatial resolutio	n			4m	ım x 1mm]			
	Sample-Detecto	or distance	e		Nc	ot fixed (most	ly 3m)			
	Window scatteri	ing			<1	0-4				

It can work in 3 different modes:

Figure 10.1: Sketch to illustrate the operation scheme: the beam (gold) is transported with the full divergence and without chopping to the end of the guide system. There an aperture (black) defines $\Delta\theta$, and its position together with the sample orientation ω also the angle of incidence θ . The beam footprint on the sample is defined by size and orientation of the virtual source.

The flux at sample is spread on about $5x1cm^2$ area maximum. On detector, due to divergence, will be same flux (below critical edge R=1) on 2mm x 6cm area; then about $10^5 n/s/Å/mm^2$ (at peak).

Figure 10.2: Sketch to illustrate the operation scheme: the beam (gold) is transported with the full divergence and without chopping to the end of the guide system. As in the conventional mode [\rightarrow 10.2], a slit (black) defines $\Delta\theta$ and together with the sample orientation ω also the angle of incidence θ . But the opening and position change during the passing of each pulse. This way high θ can be related to low λ and vice versa.

The flux is spread on a wider detector surface with respect to the conventional reflectometry mode. Spatial resolution (0.5mm) is needed to resolve the different theta.

Figure 10.7: Sketch to illustrate the high-intensity specular reflectivity operation mode.

The flux is spread on a wider detector surface with respect to the conventional reflectometry mode. Spatial resolution (0.5mm) is needed to resolve the different theta.

In the high-intensity mode about $105 \times 105 \text{mm}^2$ area of the detector is illuminated with 10^8 n/s , i.e. 10^4 n/s/mm^2 (at peak). The final optimal detector size is $40 \times 25 \text{cm}^2$.

Instrument	Facility	techn.	area	spatial res.	efficiency	global rate	local rate
			(mm imes mm)	(mm imes mm)		(s^{-1})	$(s^{-1}mm^{-2})$
FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\% @ 2.5 { m \AA}$	$3\cdot 10^7$	230
					$\sim 90\% @ 10 { m \AA}$		
					$\sim 80\% @ 30 { m \AA}$		
SuperADAM [11]	ILL	³ He	300×300	2.8 imes 2.8	$76\% @ 4.4 { m \AA}$	$2\cdot 10^5$	-
REFSANS [12]	FRM2	³ He	500×500	$\sim 2 \times 2$	$58\% @ 10 { m \AA}$	$2.2 \cdot 10^5$	300
					$\geq 50\% \in [5, 18]{ m \AA}$		
INTER [13]	ISIS	³ He, ⁶ Li	200×200	$\sim 1 \times 1$	-	-	-
POLREF [14, 15]	ISIS	³ He	200×200	$\leq 1 \times 1$	-	-	-
BIOREF [16]	HZB	³ He	300×300	2×3	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300
LR	SNS	³ He	200×200	1.3 imes 1.3	-	-	-
MR	SNS	³ He	210×180	1.5×1.5	-	-	-
Platypus [17]	OPAL	³ He	500×250	1.2×1.2	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300
SOFIA [18, 19]	J-PARC	³ He	128×128	2×2	-	-	300
		⁶ Li	256×256	4×4	-	-	300

The state of the art

The state of the art	
----------------------	--

Ī	Instrument	Facility	techn.	area	spatial res.	efficiency	global rate	local rate	
				(mm imes mm)	$(mm \times mm)$		(s^{-1})	$(s^{-1}mm^{-2})$	ļ
	FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\%$ @ 2.5Å	$3\cdot 10^7$	230	
						$\sim 90\%$ @ 10Å			
-						$\sim 80\% @ 30 \text{\AA}$			
	SuperADAM [11]	ILL	³ He	300 imes 300	2.8 imes 2.8	$76\% @ 4.4 { m \AA}$	$2\cdot 10^5$	-	
	REFSANS [12]	FRM2	³ He	500 imes 500	$\sim 2 imes 2$	58% @ 10Å	$2.2 \cdot 10^5$	300	
						$\geq 50\% \in [5, 18]$ Å			
-	INTER [13]	ISIS	³ He, ⁶ Li	200×200	$\sim 1 \times 1$	-	-	-	
-	POLREF [14, 15]	ISIS	³ He	200×200	$\leq 1 \times 1$	-	-	-	
	BIOREF [16]	HZB	³ He	300 imes 300	2 imes 3	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300	
	LR	SNS	³ He	200 imes 200	1.3 imes 1.3	-	-	-	
	MR	SNS	³ He	210 imes 180	1.5 imes 1.5	-	-	-	
	Platypus [17]	OPAL	³ He	500 imes 250	1.2 imes 1.2	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300	
	SOFIA [18, 19]	J-PARC	³ He	128×128	2×2	-	-	300	
			۴Li	256×256	4×4	-	-	300	
-									I
Estia	Max rate on det (at peak)	tector	•	Conventiona High intensit	al refl. 10 ty mode 10	⁵ n/s/Å/mm² ← ⁴ n/s/Å/mm²		×300	
	Max global rate		•	Conventiona (2x60mm ² fo High intensit (105x105mm	al refl. 12 otprint or on ty mode 10 ² footprint or	MHz whole detect. ar 0MHz ** [.] on whole detec	ea) t. area)	Flux	at detector
	Wavelength ran	ge	4 –	12 Å					
	Efficiency		>60)% (above 4Å	.)				
	Max detector si	ze	300	x500mm ²					
	Spatial resolution	on	4mr	m x 0.5mm					
	Sample-Detecto	or distance	e Fixe	ed ~4m					

	The state of	the art							
	Instrument	Facility	techn.	area $(mm \times mm)$	spatial res. $(mm \times mm)$	efficiency	global rate (s^{-1})	$\log (s^{-1}mm^{-2})$	
	FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\% @ 2.5 \text{\AA}$ $\sim 90\% @ 10 \text{\AA}$ $\sim 80\% @ 30 \text{\AA}$	$3 \cdot 10^7$	230	
	SuperADAM [11] REFSANS [12]	ILL FRM2	³ He ³ He	$\frac{300 \times 300}{500 \times 500}$	2.8×2.8 $\sim 2 \times 2$	76% @ 4.4Å 58% @ 10Å	$\frac{2\cdot 10^5}{2.2\cdot 10^5}$	- 300	
·	INTER [13]	ISIS	³ He, ⁶ Li	200×200	~ 1 × 1	$\geq 50\% \in [5, 18]$ Å	-	-	
	POLREF [14, 15] BIOREF [16]	ISIS HZB	³ He ³ He	200×200 300×300	$\frac{\leq 1 \times 1}{2 \times 3}$	- ~ 60% @ 10Å	$ 2 \cdot 10^5$	- 300	
	LR MR Platypus [17]	SINS SINS OPAL	³ He ³ He	200×200 210×180 500×250	1.3×1.3 1.5×1.5 1.2×1.2	- - ~ 60% @ 10Å	- - 2 · 10 ⁵	- - 300	-
	SOFIA [18, 19]	J-PARC	³ He ⁶ Li	128×128 256×256	$\begin{array}{c} 2 \times 2 \\ 4 \times 4 \end{array}$	-	-	300 300	
Estia	Max rate on de (at peak)	tector	•	Conventiona High intensit	l refl. 10 y mode 10	⁵ n/s/Å/mm² ◀ ⁴ n/s/Å/mm²		×300	
	Max global rate	2	•	Conventiona (2x60mm ² foo High intensit (105x105mm	l refl. 12 otprint or on y mode 10 ² footprint or	MHz whole detect. ar 0MHz ** ^r on whole detec	ea) t. area)	Flux	at detector
	Wavelength ran	ige	4 –	12 Å					
	Efficiency		>60)% (above 4Å))				
	Max detector size 300x500mm ²								
	Spatial resolution	on	4mr	m x 0.5mm					
	Sample-Detecto	or distanc	e Fixe	ed ~4m					

Instrument	Facility	techn.	area	spatial res.	efficiency	global rate	local rate
			(mm imes mm)	(mm imes mm)		(s^{-1})	$(s^{-1}mm^{-2})$
FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\% @ 2.5 { m \AA}$	$3\cdot 10^7$	230
					$\sim 90\% @ 10 { m \AA}$		
					$\sim 80\% @ 30 { m \AA}$		
SuperADAM [11]	ILL	³ He	300×300	2.8 imes 2.8	$76\% @ 4.4 { m \AA}$	$2 \cdot 10^5$	-
REFSANS [12]	FRM2	³ He	500×500	$\sim 2 \times 2$	$58\% \ $ $@ 10 m \AA$	$2.2 \cdot 10^5$	300
					$\geq 50\% \in [5, 18]$ Å		
INTER [13]	ISIS	³ He, ⁶ Li	200×200	$\sim 1 \times 1$	-	-	-
POLREF [14, 15]	ISIS	³ He	200×200	$\leq 1 \times 1$	-	-	-
BIOREF [16]	HZB	³ He	300×300	2×3	$\sim 60\% @ 10 { m \AA}$	$2 \cdot 10^5$	300
LR	SNS	³ He	200×200	1.3 imes 1.3	-	-	-
MR	SNS	³ He	210 imes 180	1.5×1.5	-	-	-
Platypus [17]	OPAL	³ He	500×250	1.2×1.2	$\sim 60\% @ 10 { m \AA}$	$2 \cdot 10^5$	300
SOFIA [18, 19]	J-PARC	³ He	128×128	2×2	-	-	300
		⁶ Li	256×256	4×4	-	-	300

The state of the art

The ESS requirements

	FREIA	Estia
Max local rate	10 ⁵ n/s/Å/mm ²	 Conventional refl. 10⁵ n/s/Å/mm² High intensity mode 10⁴ n/s/Å/mm²
Spatial resolution	4mm x 1mm	4mm x 0.5mm

The Multi-Blade project

Budapest Neutron Centre

The Multi-Blade project

Task 4.2 Neutron Detectors – The Intensity Frontier

The key objective of WP4 is the technological evolution of neutron detectors in terms of resolution, intensity and dimensions.

Budapest Neutron Centre

BINC Budapest Neutron Centre

3 years

 Sept. 15
 Sept. 16
 Sept. 17
 Sept. 18

 VP4
 Innovation of key neutronic technologies:
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V</td

Deliverable

Milestone

Partners Involved

ESS Detector Group (Francesco Piscitelli)

Wigner Research Institute (Dezsõ Varga and Eszter Dian)

BNC-Wigner is the largest organization in Hungary comprising 45 research group of various profile. BNC-Wigner has a long tradition in working with industrial companies; in 10y over 25 companies of various size and profile were involved in technology transfer related to neutron developments. BNC-Wigner will support with the detector development required in the intensity frontier task in WP4.

LUND UNIVERSITY Division of Nuclear Physics (Kevin Fissum)

LU has a long story of developing novel particle detectors for hostile particle accelerator. LU has completed the construction of the Source-Testing Facility for prototype commissioning. Their experience with developing and testing detectors will be crucial for the task in WP4.

The Multi-Blade project

concept introduced in 2005

Institut Laue-Langevin

proof of concept in 2012

University of Perugia

RECILIVED: Devis REVISID: Ford Accustrul: Ford	uber 10, 2013 mary 6, 2014 uary 13, 2014
PUBLISHED: Me	wch 12, 2014
Study of a high spatial resolution ¹⁰ B-based the	rmal
neutron detector for application in neutron	
reflectometry: the Multi-Blade prototype	
F. Piscitelli, ^{a,b,1} J.C. Buffet, ^a J.F. Clergeau, ^a S. Cuccaro, ^a B. Guèrard, ^a	
A. Khaplanov, are Q. La Manna, " J.M. Rigal" and P. Van Esch"	
^a Institut Laue-Langevin (ILL), 6. Jules Herowitz, 38042, Gemeble, France	
^b Department of Physics, University of Perugia,	
Piazza Università 1, 06123 Perugia, Italy	
^c European Spallation Source, P.O. Box 176, SE-22100 Lund, Sweden	
E-mail: piscitelli@ill.fr	
ABSTRACT: Although for large area detectors it is crucial to find an alternative to dete	ect thermal
neutrons because of the "He shortage, this is not the case for small area detectors. Neutr	ron scatter-
increasing. For small area detectors the main effort is to extrand the detectors' performa	TOPE ALL IS
At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which w	ants to in-
crease the spatial resolution of ³ He-based detectors for high flux applications. We de	eveloped a
high spatial resolution prototype suitable for neutron reflectometry instruments. It exp	ploits solid
¹⁰ B-films employed in a proportional gas chamber. Two prototypes have been construct and the results obtained on our monochromatic test beam line are presented here.	cted at ILL
KEYWORDS: Neutron detectors (cold, thermal, fast neutrons); Gaseous detectors	
ArXiv ePrint: 1312.2473	
¹ Corresponding author	

Efficiency 45% at 2.5Å A single Boron layer inclined at 5 degrees

The intensity is spread over a wider surface (5 degrees = factor x10)

EUROPEAN SPALLATION

PROCEEDINGS A

rspa.royalsocietypublishing.org

Cite this article: Piscitelli F *et al.* 2016 Neutron reflectometry on highly absorbing films and its application to ³⁰B₄C-based neutron detectors. *Proc. R. Soc. A* 20150711. http://dx.doi.org/10.1098/rspa.2015.0711

Received: 15 October 2015 Accepted: 22 December 2015

Subject Areas: materials science

Keywords: neutron-induced fluorescence, neutron reflectometry, Boron-10, neutron detection

Author for correspondence: F. Piscitelli e-mail: francesco.piscitelli@esss.se

Electronic supplementary material is available at http://dx.doi.org/10.1098/rspa.2015.0711 or via http://rspa.royalsocietypublishing.org.

THE ROYAL SOCIETY PUBLISHING

ARTICLE IN PRESS

Neutron reflectometry on highly absorbing films and its application to ¹⁰**B**₄**C**-based neutron detectors

F. Piscitelli^{1,2,3}, A. Khaplanov^{1,2}, A. Devishvili⁴, S. Schmidt^{1,5}, C. Höglund^{1,5}, J. Birch⁵, A. J. C. Dennison^{2,6}, P. Gutfreund², R. Hall-Wilton^{1,7} and P. Van Esch²

 ¹European Spallation Source ERIC, PO Box 176, Lund 22100, Sweden
 ²Institut Laue-Langevin (ILL), 71, Avenue des Martyrs, Grenoble
 ³8042, France
 ³Department of Physics, University of Perugia, Piazza Università 1, Perugia 06123, Italy
 ⁴Ruhr-Universitä Bochum, Bochum 44780, Germany
 ⁵Thin Film Physics Division, Linköping University, Linköping 58183, Sweden
 ⁶Department of Physics and Astronomy, Uppsala University, BP 516, Uppsala 75120, Sweden
 ⁷Mid-Sweden University, Sundsvall 85170, Sweden

Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the ³He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials; in

© 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited.

Efficiency 45% at 2.5Å A single Boron layer inclined at 5 degrees

The intensity is spread over a wider surface (5 degrees = factor x10)

(Not in scale)

proof of concept in 2012

EUROPEAN SPALLATIO SOURCE 4 cassette demonstrator: Results:

- Measured Efficiency 45% at 2.5Å
- Spatial Resolution 4mm x 280µm
- Counting rate capability ~5000 n/s/mm² at 2.5Å (limited by the electronics)
- Atmospheric pressure operation (thin vessel window, low scattering) (cost effective materials)

Results:

- Measured Efficiency 45% at 2.5Å
- Spatial Resolution 4mm x 280µm
- Counting rate capability ~5000 n/s/mm² at 2.5Å (limited by the electronics)
- Atmospheric pressure operation (thin vessel window, low scattering) (cost effective materials)

The ESS requirements

	FREIA	Estia
Max local rate	10 ⁵ n/s/Å/mm ²	 Conventional refl. 10⁵ n/s/Å/mm² High intensity mode 10⁴ n/s/Å/mm²
Spatial resolution	4mm x 1mm	4mm x 0.5mm

Results:

Results:

Results:

- Measured Efficiency 45% at 2.5Å
- Spatial Resolution 4mm x 280µm
- Counting rate capability ~5000 n/s/mm² at 2.5Å (limited by the electronics)
- Atmospheric pressure operation (thin vessel window, low scattering) (cost effective materials)

Next demonstrator:

- Counting rate capability
- Overlap and uniformity

The ESS requirements

, i i i i i i i i i i i i i i i i i i i	FREIA	Estia
Max local rate	10 ⁵ n/s/Å/mm²	 Conventional refl. 10⁵ n/s/Å/mm² High intensity mode 10⁴ n/s/Å/mm²
Spatial resolution	4mm x 1mm	4mm x 0.5mm

Next demonstrator (9 cassettes):

- Counting rate capability
- Overlap and uniformity

- Build technology prototype
- Tests at both beam line and Reflectometry beam line
- Electric filed modeling
- Testing and availability of beam line
- Build technology prototype
- Data analysis
- Detailed GEANT4 on detector performance

All three partners will work together on the final detector for the ESS Reflectometers

Task 4.2 Neutron Detectors – The Intensity Frontier

Deliverable

Milestone

Meeting at BNC - December 2015

Budapest Neutron Centre

Perer Perer Dian Berer Perer Dian Gábor Kiss Richard Hall, Wilton

BrightnESS

Any material holding the strips at 5deg scatters too much!

Planarity is an issue on large surfaces

~7 µm single-side

200x300mm² Al-plates single-side coated

Multi-Blade mechanical design

EUROPEAN SPALLATION SOURCE

es

Assembly completed in December 2015

1 blade area: ~120x120 mm² 9 cassettes (10 blades) Coating area: ~ 10x120x120 mm² (single side) Detector active area: ~10x9x120mm²=90x120mm²

HV on! (at EMBLA)

Demonstrator ready!

Tests to come:

- SF (Lund University) Now
- BNC (Budapest) February
- Real instrument ...

Thank you.

