

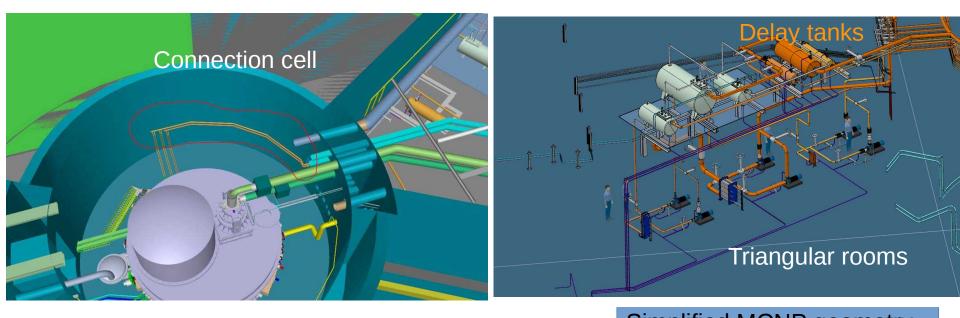
Radiation challenges of primary cooling return water

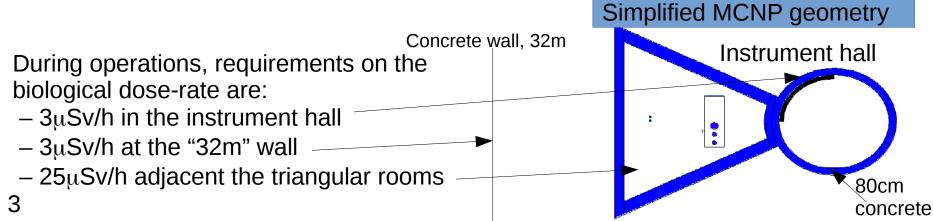
Esben Klinkby ESS & DTU

TAC 14, Lund, 5th – 7th October 2016

Motivation

EUROPEAN SPALLATION SOURCE


- Assess biological dose rates in:
 - Connection Cell
 - > Utilities rooms (triangular rooms)
 - Instrument hall


from activated primary cooling water

Adjust shielding to meet requirements

Water circuit overview

Methods

EUROPEAN SPALLATION SOURCE

 Using the MCNP Master Model, all water cells in the reflector plug are combined including impurities*, and the activity is calculated at different times using CINDER'90 (v1.05)

Irradiation history

Time step

- 1. 2700h: 2GeV, 2.5mA proton beam on target
- 2. 1680h: Beam off.
- 3. 2700h: 2GeV, 2.5mA proton beam on target
- 4. 1680h: Beam off.
- 5. 2700h: 2GeV, 2.5mA proton beam on target
- 6. 1680h: Beam off.
- 7. 2700h: 2GeV, 2.5mA proton beam on target

Delay tank relevant

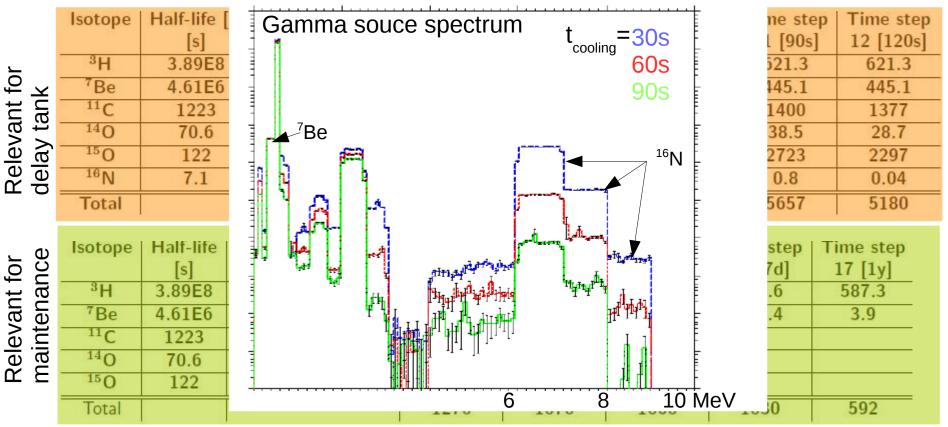
- 8. Os cooling time
- 9. 30s cooling time
- 10. 60s cooling time
- 11. 90s cooling time
- 12. 120s cooling time

Maintenance relevant

- 13. 1h cooling time
- 14. 4h cooling time
- 15. 1d cooling time
- 16. 7d cooling time
- 17. 1y cooling time

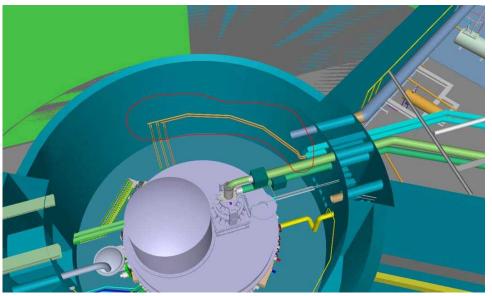
- Source term prepared for each time step using gamma script
- Gamma transport calculations results in biological dose-rate maps using ICRP-116 fluence-to-dose conversion factors
- *Full source term* describes the total activity resulting from ~2years of running.
 - A good representation of the long lived isotopes.
 - Modeling is static => depending on subsystem: full source term is a poor representation of the short lived

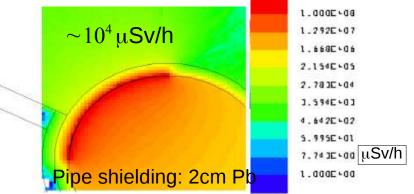
Inventory


	Isotope	Half-life [s]	Decay	Time ste	Time step Tir		p Time step	Time ste	p Time step	
		[s]	mode	8 [0s]	8 [0s] 9 [30s]		10 [60s]	11 [90s]	12 [120s]	
Relevant for delay tank	³ Н	3.89E8	β	621.3	621.3 0		621.3	621.3	621.3	
	⁷ Be	4.61E6	$EC\beta + \gamma [477keV]$	/] 445.1		445.1	445.1	445.1	445.1	
	¹¹ C	1223	β	1473		1449	1424	1400	1377	
	¹⁴ 0	70.6	$\beta + \gamma [2.3 MeV]$] 92.3	92.3		51.7	38.5	28.7	
	150	122	β	4511	3827		3228	2723	2297	
	¹⁶ N	7.1	$\beta + \gamma [6.1 MeV]$] 4462		266.1	14.4	0.8	0.04	
	Total			12380		7161	6234	5657	5180	
Relevant for maintenance	Isotope	Half-life	Decay	Time step		me step		Fime step	Time step	
		[s]	mode	13 [1h]	1	4 [4h]	15 [1d]	16 [7d]	17 [1y]	
	³ H	3.89E8	β	621.3		621.3	621.2	620.6	587.3	
	⁷ Be	4.61E6 E	$ECeta + \gamma[477keV]$	444.9	444.9 4		439.4	406.4	3.9	
	¹¹ C	1223	β	191.6						
kel 1a	140	70.6	$\beta + \gamma [2.3 MeV]$							
щс	¹⁵ 0	122	β							
	Total			1270		1070	1060	1030	592	

Activities in Curie. Only main contributers listed - "Total" includes all

• The first few minutes, ¹⁶N is the most problematic nuclide. At later times ⁷Be


Inventory

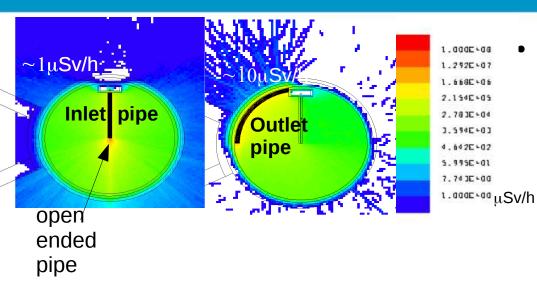

Activities in Curie. Only main contributers listed - "Total" includes all

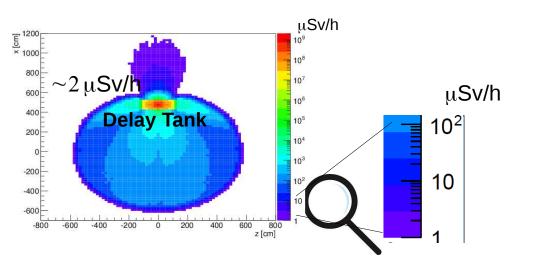
• The first few minutes, ¹⁶N is the most problematic nuclide. At later times ⁷Be

Follow the water: 1 - Connection Cell

- Pipe at the thin instrument hall facing wall is problematic
- Impractical to shield
- Move <u>delay tanks to Connection Cell</u>

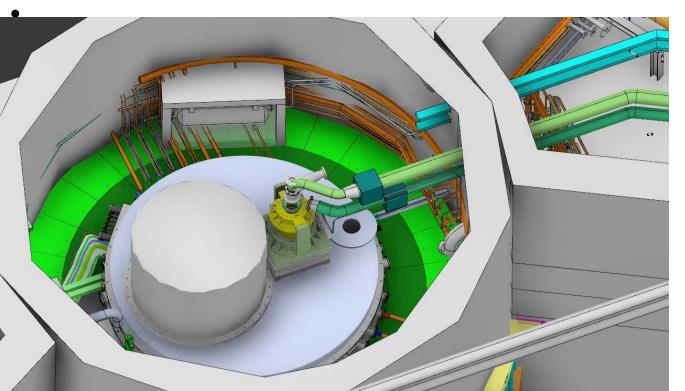
Conservative estimation:


- Overestimating water volume fraction,
- Underestimating cooling time


EUROPEAN

SPALLATION SOURCE

Shielding in Connection Cell^e


- Limit in instrument hall: 3µSv/h drives the shielding
 - <u>~12cm lead around Delay</u> tank inlet pipe
 - <u>~18cm lead</u> between delay tanks and instrument hall
 - <u>2cm lead</u> around 90s delay tank outlet ← over conservative: Assumes
 ⁷Be built up in water, rather than in filters.

Delay tanks – proposed solution

- Move (Thermal Moderator Cooling + Reflector Cooling) - Delay Tanks into Connection Cell
- Lead shielding

- Shield inlet pipes to delay tanks
- Avoid shielding of outlet pipes:
 - Use delay time 90 s
 - Remove conservatism in calculation for pipes inside connection cell

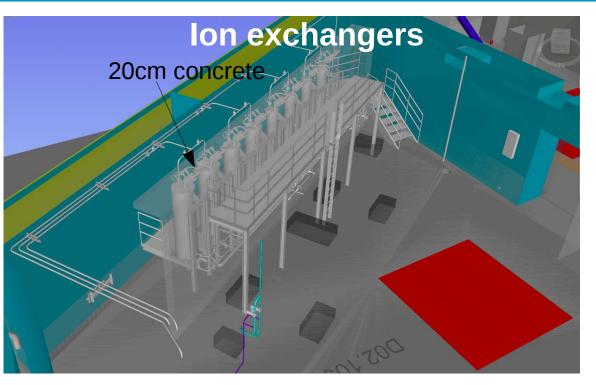
EUROPEAN SPALLATION

SOURCE

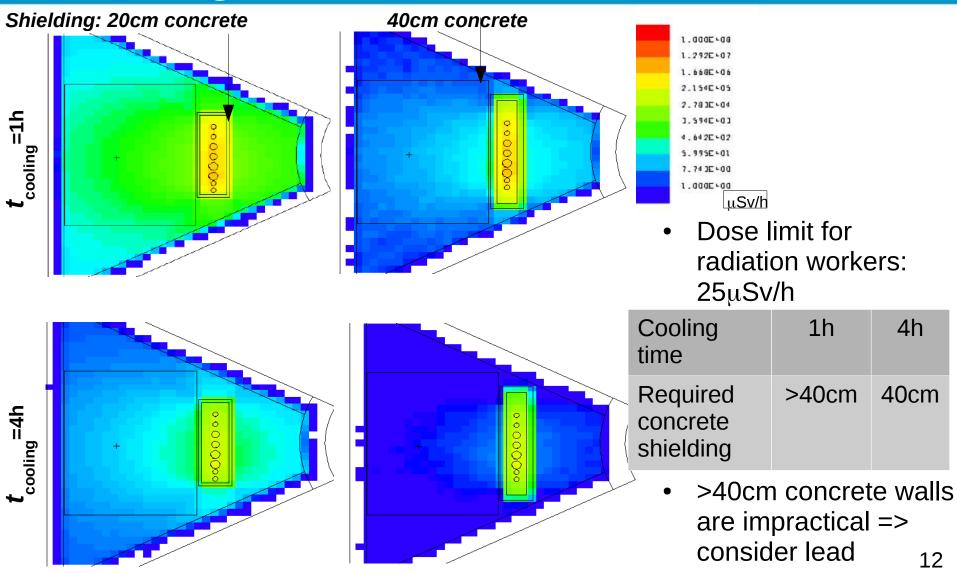
Delay tanks – proposed solution

Issues/Risks

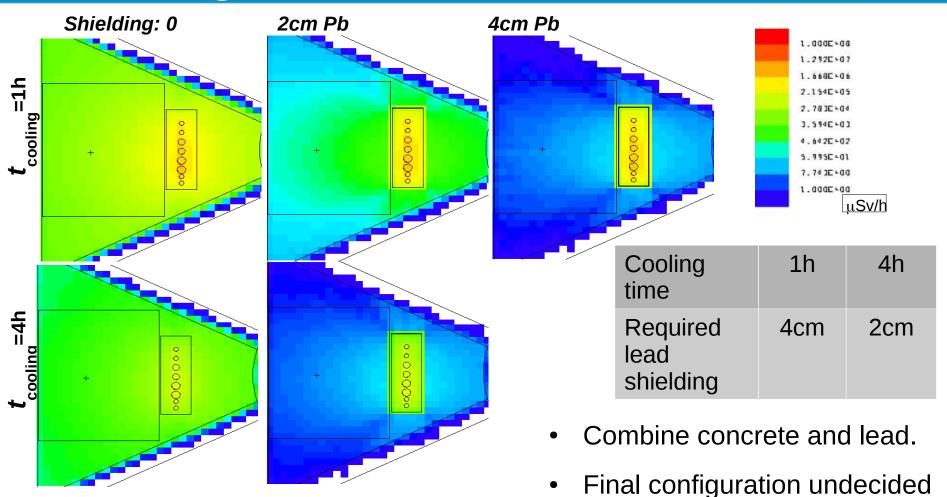
- Radiation resistance of electronics and drive unit
- Shielding of pipes within monolith vessel


Next steps

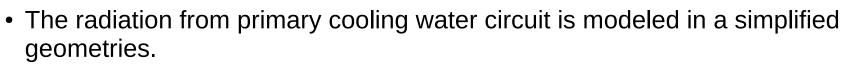
- Remove conservatism in calculations
- Alternative solution: Replace monolith shielding blocks with delay tanks Issue: High point in piping system could lead to H₂-pockets


Triangular rooms: maintenance

- After ~few hours, ⁷Be in ion exchanger columns dominates
- Ion exchangers, situated behind 20cm concrete
- Optionally, unproblematic to add 10cm lead



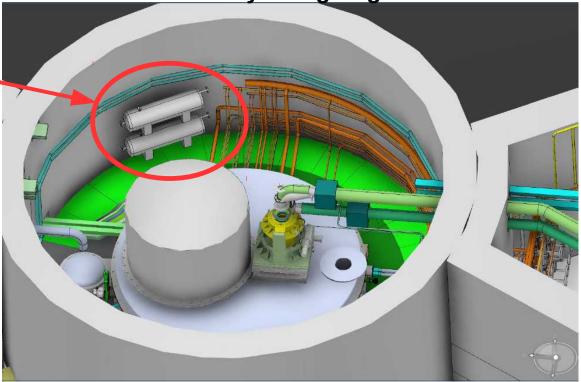
Triangular rooms: maintenance



Triangular rooms: maintenance

Conclusions

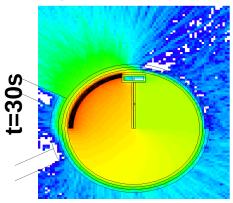
- For each subsystem of the circuit the shielding needed to reach the required biological dose limits are calculated
- Under the assumption that <u>the delay tank is moved into the connection</u> <u>cell</u>, the results can be summarized as follows:
 - Delay tank inlet pipe Pb shielding : ~12cm
 - Delay tank Pb shielding : ~18cm
 - Delay tank outlet pipe Pb shielding : ~2cm [for 90s DT] over conservative. Likely not needed
 - Pipe Pb shielding in triangular rooms : ~0cm [for 90s DT]
 - Shielding in triangular rooms required for maintenance
- : 1 hour cooling: >40cm concrete / 4cm lead
- : 4 hour cooling: 40cm concrete / 2cm lead
- Final note: Ensure all contributers are accounted for: 3μ Si/h / 25μ Si/h is for <u>everything</u>


Next steps

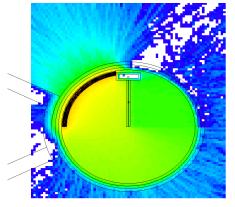
EUROPEAN SPALLATION SOURCE

- Engineering redesign:
 - Place delay tank in connection cell
 - Add shielding to pipes and ion exchanger
- Neutronics:
 - Remove overconservatism: model 7Be as (mostly) filtered in ion exchanger
 - Model electronics in connection cell
 - Refine neutronics models according to updated engineering

Backup slides

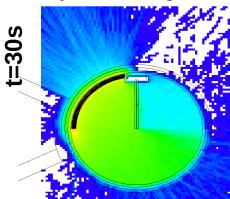


EUROPEAN SPALLATION SOURCE

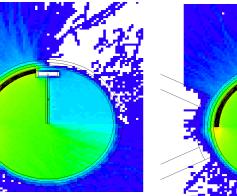


4 – delay tank outlet pipe - extra

Pipe shielding: 0

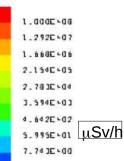

Pipe shielding: 2cm Pb

Pipe shielding: <u>4cm Pb</u>


1.000E +08 1.292E +07 1.668E +06 2.154E +05 2.783E +04 3.594E +03 4.642E +02 5.995E +01 7.743E +00 1.000E +00

Pipe shielding: 6cm

Pipe shielding: 8cm Pb



2 – delay tanks

DT shielding: 0 1.000E+00 DT shielding: 8cm Pb

DT shielding: 18cm P

- <u>Alterntive approach : Full source term</u> at $t_{cooling}$ =0 is placed in the delay tank
- Conservative: neglects delay, water volume fraction
- The shielding on the room-facing size, may be relaxed – from a solid angle consideration ~ the dose level in the instrument hall is $\sim (1m/10m)^2$ lower, corresponding to ~4cm lead

2 – delay tanks

DT shielding: 10cm Pb

DT shielding: 14cm Pb

 $\sim 10 \,\mu$ Sv/h,

DT shielding: 18cm Pb

200

400

600

800

z [cm]

~50 սSv/h

(近 1200 × 1000

800

600

400

200

-200

-400

-600

[E] 1200 × 1000

800

600

400

200

-200

400

등 × 1000

800

600

400

200

0

-200

-400

2μSv/h

-200

-400

-800

0

լ_{10⁰} <mark>μSv/h</mark>

10⁸

107

10⁶

10⁵

104

10³

 10^{2}

10

10⁹

108

107

10⁶

10⁵

10⁴ 10³

 10^{2}

109

10⁸

107

10⁶

10⁵

10⁴

10³

10²

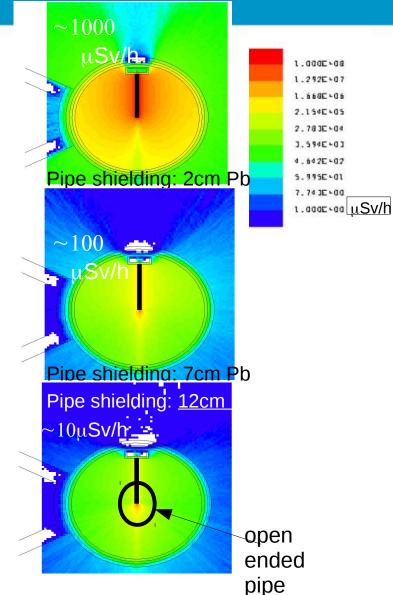
10

μSv/h

սSv/h

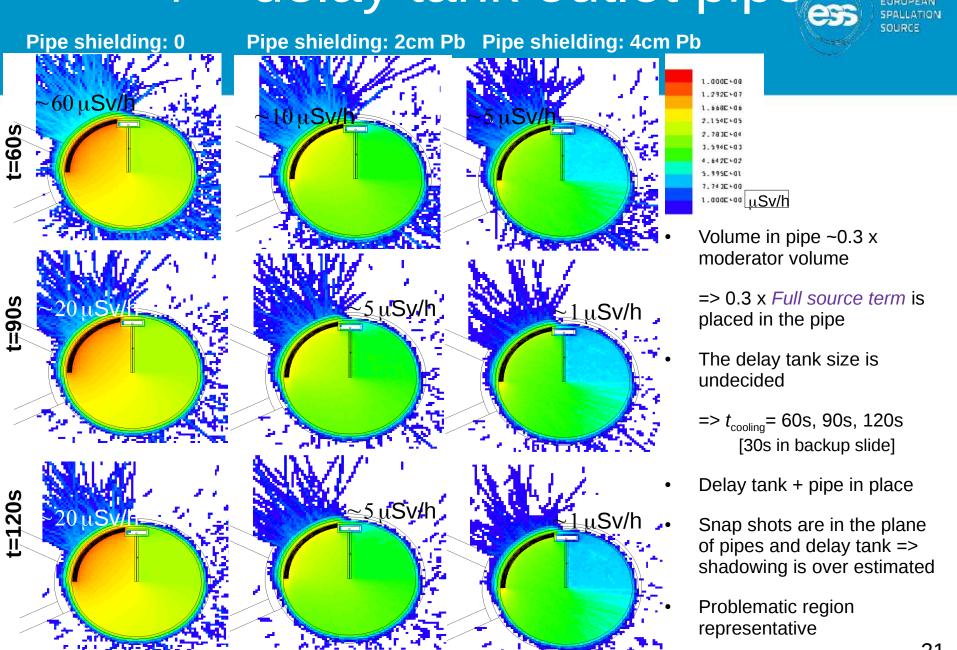
800

- 9L of water in the moderator. Exhaust speed 0.6L/s => average cooling time at exit: 7.5s.
- 5m vertical + 5m horizontal: 5s
- Starting at $t_{cooling}$: 7.5s+5s = 13s, the delay tank is modeled:


Cooling time [s]	13	16	19	22	25	28	31	34	37
Source weight [%]	12	12	12	12	12	12	12	12	4

- I.e. CINDER'90 is re-run, to prepare source definitions. For each shielding geometry, 9 separate MCNP simulations are performed and the μSv/h resulting dose-rate maps added
 - ~18cm lead needed to reach doselevel requirements in the instrument hall

3 – delay tank inlet pipe

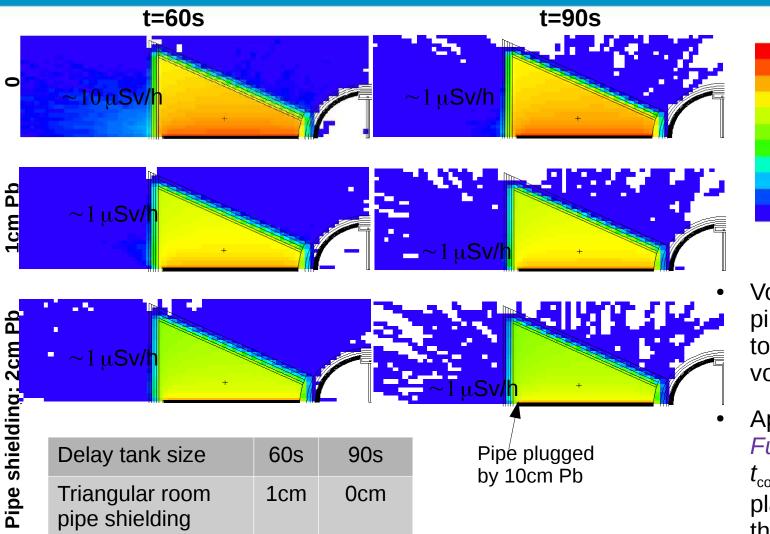


EUROPEAN SPALLATION SOURCE

- Volume in pipe ~1/6 moderator volume
 - => 1/6 x Full source term at $t_{cooling}$ =0 is placed in the pipe
- Conservative: no cooling
- <u>~12cm lead needed</u> to ensure sufficiently low dose levels in the instrument hall

4 – delay tank outlet pipe

4 – delay tank outlet pipe



• Shielding requirements on the outlet pipe depend on the size of the delay tank

Delay tank size	30s	60s	90s	120s
Outlet pipe shielding	10cm	4cm	2cm	2cm

5 – triangular rooms: pipes

Volume in 30m pipe corresponds to the moderator volume

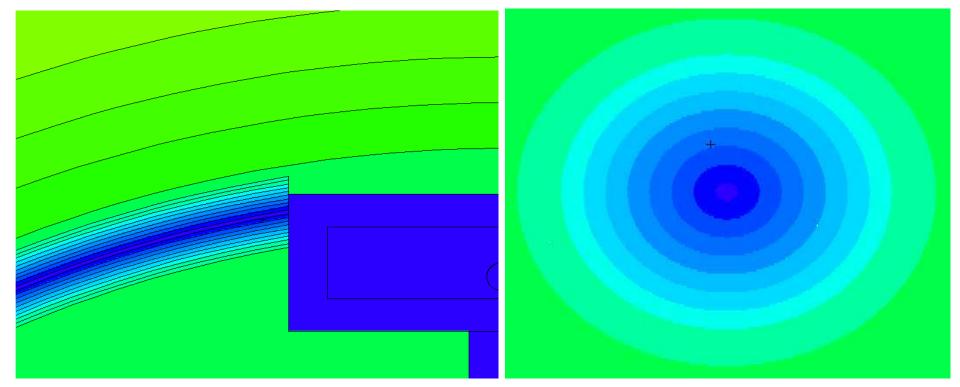
1.000E+08

1.668E+06

2.154E+05 2.783E+04 3.594E+03 4.642E+02 5.995E+01

7.74 JE -00

1.000E+00 uSv/h


• Approach: Place *Full source term* at $t_{cooling}$ =60s, 90s is placed in a pipe in the triangular room

Importance biasing

EUROPEAN SPALLATION SOURCE

Importance doubled every 2cm in lead and 25cm in concrete

Zoom in of delay tank and outlet pipe[left] and pipe cross-section [right]. Colored by gamma importance.