MCA Costing Exercise - DREAM

15.09.2016 | Harald Kleines/Frank Suxdorf/Peter Harbott presented by Thomas Gahl

Boundary Conditions for the Calculation

- Mechanical Construction incomplete =>
- Actuators and Sensors not properly defined
- Mechanical construction is continuously changing
- Motion Control list of allowed devices is under development
- No final decision on the allowed electronics components
- Some open issues in the interface between ESS and in kind partners => consequences for labor costs
=> Only rough estimation is possible

General Approach

- Starting Point: MCA Table defined by the Motion Control Group
- Extend it by two additional columns for
- Sensors (switches, encoders, ...) and actuators (motors, pneumatic elements,...)
- Electronics (PLCs, motor controllers, frequency converters, SSImodules, connectors, cables
- Assume costs according to axis type (pneumatic, stepper motors with or without encoders, AC drives,....)
- Fixed costs (racks, PLCs,...) are linearly distributed
- Define the labor costs according to work packages and assume an average price per FTE

FORSCHUNGSZENTRUM

-	A	B	C	D	E	F	G	H	I	J	K
1	Instrument										
2	Re v.	1									
3	Axis	Device Description	Motion Type	Actuator Type	Accuracy (mm/ ${ }^{\circ}$)	Vacuum	Location	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { moderator } \\ & (\mathrm{m}) \end{aligned}$	Notes / Comments	Cost for motors, encoders, switches,	Cost for Electronics
4	1	Bispectral switch	Translation	Electrical	0,1	Atmosphe re	Bunker	6		2000	1500
5	2	Bispectral switch	Rotation	Electrical	0,01	Atmosphe re	Bunker	6		9000	2500
6	3	Heavy shutter 1	Translation or Rotation	Pneumatic	0,01	Rough Vacuum	Bunker	22	Slope for horizontal, Safety iussue?	2000	1000
7	4	Slit 1	Translation	Electrical	0,1	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Cave	75,5	in / out, Piezo	4000	2500
8	5		Translation	Electrical	0,1	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Cave	75,5	in / out, Piezo	4000	2500
9	6		Translation	Electrical	0,1	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Cave	75,5	in / out, Piezo	4000	2500
10	7		Translation	Electrical	0,1	$\begin{gathered} \text { High } \\ \text { Vacuum } \end{gathered}$	Cave	75,5	in / out, Piezo	4000	2500

- Costs for motors etc. differ very much from requirements:
- Application in bunker: High radiation,
- Pneumatics tend to be cheap in control
- Piezo control in high vacuum are expensive
- Overall sum: $135.500 €$

Labor Costs

- Rough Definition of Work Packages:
- Schematic drawings: 2 MM
- Construction of electrical cabinets: 5 MM
- Engineering and project management: 5 MM
- Motion Control SW (PLC,..): 6 MM
- PC Software (Linux): 4 MM
- Pre-Commissioning in Jülich: 4 MM
- Installation and cabling in Lund: 2 MM
- Commissioning in Lund: 4 MM
- Total: $\mathbf{3 2} \mathbf{~ M M}=\mathbf{2 . 7}$ FTE
- Total labor cost: ca. $300.000 €$
- Assumption: Average FTE cost is ca. $110.000 €$ per year

Time Line

- Mapping to the timeline is quite open
- => possible approach: linear distribution

	01 Phase 1	02 Project Management \& Integration	03 Design	04 Procurement \& Fabrication	05 Installation	06 Cold Commission ing	Total
07 Motion Control and Automation	$€ 0$	$€ 60000$	$€ 60000$	$€ 195500$	$€ 60000$	$€ 60000$	$€ 435500$

- => better approach is to distribute the different work packages (last slide) to the different phases of the project

