

Multi-Grid Detector Test at CNCS

Anton Khaplanov ESS Detector Group

www.europeanspallationsource.se September 12, 2016 **Multi-Grid Concept and Design** MG.24 prototype **Multi-Grid demonstrator for CNCS** Setup at CNCS Vanadium measurements **Energy resolution UGe2 crystal** Backgrounds Simulations **Outlook + Conclusions**

Introduction

Bruno Guerard, Jean-Claude Buffet,

Jean-Francois Clergeau, Anthony Leandri

NEUTRONS FOR SCIENCE®

<u>ESS:</u>

ILL:

Anton Khaplanov, Fatima Issa, Richard Hall-Wilton, Oliver Kirstein, Tomasz Brys, Michail Anastasopoulos, Isaak Lopez Higuera, Richard Bebb, Sara Arranz, Carina Höglund*, Linda Robinson*, Susan Schmidt*

<u>Centre for Energy Research (Hungary):</u> Eszter Dian

<u>Linköping University:</u> Jens Birch, Lars Hultman, (also *)

<u>SNS:</u>

Ken Herwig, Georg Ehlers, Michelle Everett, Kevin Berry

brightness

WP 4.3: Large-Area Detectors

Previous publications:

B4C layers:

*C. Höglund et al, J of Appl. Phys. 111, 104908 (2012) Characterization:

- *A. Khaplanov et al., arXiv:1209.0566 (2012)
- *B Guerard et al., NIMA, 720, 116-121 (2013),

http://dx.doi.org/10.1016/j.nima.2012.12.021iJ

*J. Correa et al., Trans. Nucl. Sc. (2013), DOI: 10.1109/TNS. 2012.2227798

*A. Khaplanov et al., (2014) *J. Phys.: Conf. Ser.* **528** 012040 doi:10.1088/1742-6596/528/1/012040

Gamma sensitivity:

*A. Khaplanov et al., JINST 8, P10025 (2013), arXiv: 1306.6247

Alpha background:

*A. Khaplanov et al., JINST 10, P10019 (2015); doi:10.1088/1748-0221/10/10/P10019

SPALLATION NEUTRON SOURCE

EUROPEAN SPALLATION SOURCE

Introduction

EUROPEAN SPALLATION SOURCE

- A kind offer by K. Herwig to test MG at SNS
- Recommendation of 2015 annual review
- Multi-Grid detector has been installed at CNCS, SNS in June 2016
- First beam data was taken July 11-14
- Since July 14 it has operated continuously
- No access to detector possible until next major beam outage in about 6 months
- All results shown here are **preliminary and subject to change**.
- The analysis is ongoing and is expected to be complete end of 2016

Introduction

brightness

Introduced at ILL, jointly developed by ILL and ESS under CRISP project And now under BrightnESS

n

¹⁰B₄C Layers

EUROPEAN SPALLATION SOURCE

Earlier Prototypes

brightness

IN6 demo – 96 grids – Oct 2012

Multi-Grid Detector – IN5 Demonstrator

EUROPEAN SPALLATION SOURCE

brightness

Detector: 2.4 m² active area Column x8: wire-frame coincident readout

CRISP

Blade **x18432**: enriched B4C coating good adhesion, uniformity,

Grid **x1024**: low activity, minimal dead material

Multi-Grid – Instrument Concept

EUROPEAN SPALLATION SOURCE

> NEUTRONS FOR SCIENCE®

Direct Spectrometers for the ESS

EUROPEAN SPALLATION SOURCE 255

			brightness
Instrument (type)	C-SPEC (cold)	T-REX (thermal (bispectral))	VOR (bispectral)
Source – sample, m	155.4	166.3	30.2
Sample – detector, m	4	3	3
Detector coverage, deg	-30 to 140 +-26	-30 to 150 -15 to +25	-40 to +140 +-26
Detector area, m2	50 or 35	21	37
λ range, Å	1.5-20	0.7-20	1-20
Typical initial λ, Å (meV)	2 to 15 Å (20 to 0.36 meV)	0.7 to 6.4 Å (160 to 2 meV)	1 to 9Å (80 to 1 meV)
Max energy transfer, meV	~80% E_i_max	~80% E_i_max Up to 140 meV	~80% E_i_max

Baseline Detector Parameters

EUROPEAN SPALLATION SOURCE

Instrument	Detector area (% of 4π)	Multi-Grid configuration	# grid channels	# wire channels
C-SPEC Cold	50m ² or 35m ² ; (25% or 17%)	16 cells 120 or 80 columns; 160 grids high;	19200 or 12800	7680 or 5120
T-REX Bispectral	21m ² (18%)	20 cells 96 columns; 96 grids high;	9216	7680
VOR Bispectral	37m ² (20%)	16 cells 96 columns; 160 grids high;	15360	6144

Multi-Grid Design and testing at ESS

MG.24

- 24-grid test detector
- 2 modules of 12 grids
- 32 layers
- Individual channel readout
- Flow-through

Used at ESS Lund (source, background, readout); IFE, Norway (beam).

EUROPEAN

SPALLATION SOURCE

es

Multi-Grid test at CNCS

MG.CNCS

- A kind offer by K. Herwig to test MG at SNS •
- Recommendation of 2015 annual review • Goals:
- Test at spectrometer ٠
- Operation for 6+ months •
- Side-by-side comparison to He3 •
- User experiments •

Solution:

- Size = half of "8-pack" module 1.1m x 19cm •
- Installation June-July 2016 ٠
- 96 grids •
- 2 modules of 48 grids •
- 32 layers •
- Adapted layer thickness
- Gas flow-through

Currently running as experiment 17219

brightness 300 Hz Double Disł Choppe

300 Hz Fermi

Source - Sample Distance: 36.2 m

EUROPEAN SPALLATION SOURCE

Multi-Grid test at CNCS

EUROPEAN SPALLATION SOURCE

brightness

Efficiency optimized depending on the wavelength range

Efficiency for CNCS: Using 32 layers (16 cells) and **optimized for 4Å**

Constant layer thickness: 0.75um optimal. ~2% improvement using varied thickness: 7blades 0.5um, 7blades 1.0um, 3 blades 1.5um

Construction of MG.CNCS in Lund

EUROPEAN SPALLATION SOURCE

> NEUTRONS FOR SCIENCE

Construction of MG.CNCS in Lund

Initial test at R2D2 at IFE. Thanks to I. Llamas, M. Riktor, T. Haraldsen

Multi-Grid test at CNCS

EUROPEAN SPALLATION SOURCE

brightness

Installation completed! Detector inaccessible for next 6 months

Detector shielded with boron and cadmium

Detector Position

View from above

EUROPEAN

SPALLATION SOURCE

ess

Front-end Electronics

128 anode channels96 grid channels

Off-the-shelf elecronics Mesytec MUX-16 multiplexing boards

8 boards for anodes6 boards for cathodes

Output: Channel amplitude, channel ID Multiplicity 2

Total 8 channels to be digitized Gate signal from grids and wires

12-m cables to Back-end electronics

Data Acquisition

2 systems:

MCA4 – Fast ComTec 4 channels, asynchronous acquisition, 8 ns timestamp 14 bit resolution MADC-32 – Mesytec 32 channels, synchronous acquisition, 62 ns timestamp, 13 bit resolution

Acquisition on 2 computers Data accessible continuously

EUROPEAN SPALLATION SOURCE

Raw Data Monitoring

EUROPEAN SPALLATION SOURCE

brightness

Pulse height spectra and channel counts monitored on-line

SPALLATION SOURCE Operation since 2016-07-14 brightness Rate in Multi-Grid 10⁴ **NEUTRONS** FOR SCIENCE 10³ rate in MG, Hz 10² 10¹ 10⁰ 25 10 15 20 30 35 5 40 45 50 55 0 days since 2016 July 14

Operating without possibility of access since installation

Count rate stable to within 1-2% for a constant setting

EUROPEAN

es

	Measurement	Energy, meV	Wavelength, Å	Notes
Available	Vanadium, HF, 300Hz	0.76	10.4	
data	Vanadium, HF, 300Hz	1.0	9.0	
	Vanadium, HF, 300Hz	1.55	7.2	
	Vanadium, HF, 60Hz	3.32	4.96	Low resolution, high flux
	User experiments			
	Vanadium, HF, 300Hz	1.55	7.2	
	Vanadium, HF, 300Hz	2.49	5.73	
	Vanadium, HF, 300Hz	3.32	4.96	
	Vanadium, HF, 300Hz	4.5	4.26	
	Vanadium, HF, 300Hz	8.0	3.20	
	Vanadium, HF, 300Hz	12	2.61	
	Vanadium, HF, 300Hz	15	2.34	
	User experiments			
Experiment 1/219 for	UGe2, 30060Hz	13.74	2.44	Reflection in MG, U prompt peak
Data from He3 array available	UGe2, 30060Hz	17.20	2.18	Reflection in He3, U prompt peak
	UGe2	3.5	4.83	Reflection not in MG, U prompt peak
	UGe2	2.5	5.72	Reflection not in MG, U prompt peak
Data from closest 8-pack available for other runs	UGe2	2.0	6.40	Reflection not in MG, U prompt peak
	UGe2	1.3	7.93	Reflection not in MG, U prompt peak
	UGe2	8	3.20	Reflection not in MG, U prompt peak
	UGe2	32	1.60	Reflection not in MG, U prompt peak
	User experiments			(some high rate experiments)
	Various times: background			Beam off

Vanadium Measurements

EUROPEAN SPALLATION SOURCE

meV	A
0.76	10.4
1.0	9.0
1.55	7.2
2.49	5.73
3.32	4.96
4.5	4.26
8.0	3.20
12	2.61
15	2.34

Relative Efficiency

EUROPEAN SPALLATION SOURCE

brightness

FOR SCIENCE

Spectra normalized to detector area and acquisition time Peak ratio ≈ relative efficiency (peak counts in MG) / (peak counts in He3) Peak ratio trend correct, but values not fully understood yet

meV	Å	Peak ratio
0.76	10.4	1.18
1.0	9.0	1.12
1.55	7.2	1.03
2.49	5.73	0.956
3.32	4.96	0.913
4.5	4.26	0.846
8.0	3.20	0.769
12	2.61	0.715
15	2.34	0.702

Energy Reconstruction

EUROPEAN SPALLATION SOURCE

Energy Reconstruction

EUROPEAN SPALLATION SOURCE

Energy Reconstruction Front Cells Only

EUROPEAN SPALLATION SOURCE

brightness

Correction for depth does not compromise data quality Detector equivalent to a flat detector

Energy Transfer Histograms

EUROPEAN SPALLATION SOURCE

Instrument Energy Resolution

S EUROPEAN SPALLATION SOURCE

Drio ntn**ess** Multi-Grid NEUTRO Х 10 FOR SCIENCE He3 \diamond AI 240Hz $\mathbf{\nabla}$ HF 300Hz Elastic resolution, meV HR 180Hz O *☆ ^{*}* 10⁰ *☆ ☆ X 10⁻¹ X 10⁻² PRELIMINARY 10⁰ 10¹ 10^{2} energy, meV

Instrument Energy Resolution

EUROPEAN SPALLATION SOURCE

To be followed up with a high resolution measurement

Data for AI 240Hz, HF 300Hz, HR 180 Hz from http://sns.gov/cncs

UGe2 Crystal Measurement

EUROPEAN SPALLATION SOURCE

brightness

Measurements with a reflection hitting the MG vs He3 Can be used to study high local instantaneous rate Fast n sensitivity

Fast Neutrons

Under investigation

brightness

UGe2, 2.0 meV Multi-Grid **Analysis in progress** 400 He₃ 350 300 U fast n pulse from sample 250 counts 200 Prompt pulse from target 150 100 50 White manuscription of the second 0^L 5.6 5.8 6.6 6.8 7.2 6 6.2 6.4 7 time, us x 10⁴ Same detector area considered Fast n pulses appear to be ~ x2 lower in MG

Gamma Sensitivity

EUROPEAN SPALLATION SOURCE

Alpha background reduction demonstrated

Tests done at ILL using Proto1 and at ESS using MG.24 to reduce background x50 reduction confirmed in both

brightness

EUROPEAN SPALLATION SOURCE

Alpha background: A. Khaplanov et al., JINST 10, P10019 (2015); doi:10.1088/1748-0221/10/10/P10019

Multi-Grid Simulations

To investigate performance further, full simulation is needed:

Beam λ , t distribution at sample

- Scattering scenarios at sample
- Detector response

McStas

Geant4

With all 3 points included – possible to compare detector configurations with respect to quality of measured data.

EUROPEAN SPALLATION SOURCE

brightness

 \Rightarrow

Multi-Grid Simulations

brightness

- Complete simulation in GEANT4
- ESS Detector Group Framework
- Extension of GEANT4 including crystal structure and interactions of thermal neutrons
- Work of Eszter Dian

• CER, Hungary in-kind contribution

Simulation package:

*T. Kittelmannet al., "Geant4 Based Simulations for Novel Neutron Detector Development", (CHEP) (2013); doi: 10.1088/1742-6596/513/2/022017;

*arXiv:1311.1009v1.

T. Kittelmann, M. Boin. "Polycrystalline neutron scattering for Geant4: NXSG4", Computer Physics Communications 189, 114-118 (2015); doi:10.1016/j.cpc.2014.11.009

Multi-Grid Simulations

EUROPEAN SPALLATION SOURCE

Outlook

Efficiency: can be derived from V runs; Not ideal as the 2 detectors never measure the same beam; Only relative measurements available; MG tuned for 4Å.

Rate: needs to be analyzed in detail

Scattering: need to analyze ToF as a function of detection position; Comparison to simulation.

UGe2 data: further analysis of fast n peak; Spatial distribution of hits

Background: analysis of time-independent background

More test measurements whenever possible. Continued operation during user program.

EUROPEAN SPALLATION

SOURCE

Conclusions

Operation with no access for 2 months so far.

All data compared to He3.

Spectra comparable between MG and He3. All known features in both.

Backgrounds on similar levels. Some better in He3, some in MG.

Energy resolution of He3 reproduced. Not influenced by the depth of the detector.

Detailed simulations in progress

Thanks to the colleagues at SNS for this opportunity and cooperation!

Horizon 2020 grant agreement 676548

EUROPEAN SPALLATION

SOURCE