

The Bunker : Going from 5.5m to 1μ Sv/hour

Stuart Ansell

European Spallation Source, Lund, Sweden.

September 14, 2016

We start with 10^{16} neutrons per second >1MeV.

Interested in:

- Dose at outside a wall (<100 n/sec/cm²)
- \blacksquare Signal to noise ratio (S/N) ($\approx 1 \ n/sec/cm^2$)
- Elastic interactions require ~ 100 collision to get to 1eV
- Ports provide significant channels of low collision number neutrons

- Bunker is a huge open void
- Non-directed neutrons become lost in the huge surface area of the bunker
- Ideally every neutron has one scatter within the bunker
- If instruments don't follow this idea – everyone pays

Empty Bunker Lethagy

Off axis is the most significant modifer in an empty bunker as it makes use of the monolith

Focused Guide

 Focused guide (to a pin holes) and Bender to a scrapper produce the similar effect.

Stuart Ansell

Filled Bunker

 Despite the open bunker – interferance is weak after 9m

 Cross talk can be further supressed by steel strips at beam high

Bunker Wall Layout

- Complementary combination of *B-Poly Concrete* and steel.
- Gain in the intermediate energies
- Less activation

Stuart Ansell

Bunker Wall Dose

Alternating B-Poly-Concrete and Steel.

Stuart Ansell

Bunker Roof Dose

- Classic 5-layer design
- Beamline is metal guide focussed to a point

- Bunker is has sufficient shielding to allow ANY in beamline object.
- Instrument teams should only worry about their own exits
- The less your can put close to your guide would better [first approximation].

