
This material exempt per Department of Commerce license exception TSU

Vivado HLS 2013.3 Version

Introduction to High-Level Synthesis

with Vivado HLS

© Copyright 2013 Xilinx

After completing this module, you will be able to:

– Describe the high level synthesis flow

– Understand the control and datapath extraction

– Describe scheduling and binding phases of the HLS flow

– List the priorities of directives set by Vivado HLS

– List comprehensive language support in Vivado HLS

– Identify steps involved in validation and verification flows

Objectives

Intro to HLS 11- 2 © Copyright 2013 Xilinx

Introduction to High-Level Synthesis

High-Level Synthesis with Vivado HLS

Language Support

Validation Flow

Summary

Outline

Intro to HLS 11- 3 © Copyright 2013 Xilinx

High-Level Synthesis

– Creates an RTL implementation from C level

source code

– Extracts control and dataflow from the source code

– Implements the design based on defaults and

user applied directives

Many implementation are possible from the

same source description

– Smaller designs, faster designs, optimal designs

– Enables design exploration

High-Level Synthesis: HLS

………………
………………VHDL

Verilog
System C

Vivado HLS

Constraints/
Directives

………………

………………

C, C++,

SystemC

RTL Export

IP-XACT Sys Gen PCore

Intro to HLS 11- 4 © Copyright 2013 Xilinx

Design Exploration with Directives

The same hardware is used for each iteration of
the loop:

•Small area
•Long latency

•Low throughput

Different iterations are executed concurrently:
•Higher area

•Short latency
•Best throughput

…
loop: for (i=3;i>=0;i--) {

if (i==0) {
acc+=x*c[0];
shift_reg[0]=x;

} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}

….

Different hardware is used for each iteration of the
loop:

•Higher area
•Short latency

•Better throughput

Before we get into details, let’s look

under the hood ….

One body of code:

Many hardware outcomes

Intro to HLS 11- 5 © Copyright 2013 Xilinx

How is hardware extracted from C code?

– Control and datapath can be extracted from C code at the top level

– The same principles used in the example can be applied to sub-functions

• At some point in the top-level control flow, control is passed to a sub-function

• Sub-function may be implemented to execute concurrently with the top-level and or other sub-functions

How is this control and dataflow turned into a hardware design?

– Vivado HLS maps this to hardware through scheduling and binding processes

How is my design created?

– How functions, loops, arrays and IO ports are mapped?

Introduction to High-Level Synthesis

Intro to HLS 11- 6 © Copyright 2013 Xilinx

HLS: Control Extraction

void fir (
data_t *y,
coef_t c[4],
data_t x
) {

static data_t shift_reg[4];
acc_t acc;
int i;

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {
acc+=x*c[0];
shift_reg[0]=x;

} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}
*y=acc;

}

Code

From any C code example .. The loops in the C code correlated to states
of behavior

Function Start

For-Loop Start

For-Loop End

Function End

0

2

Control Behavior

1

Finite State Machine (FSM)
states

This behavior is extracted into a hardware
state machine

Intro to HLS 11- 7 © Copyright 2013 Xilinx

HLS: Control & Datapath Extraction

void fir (
data_t *y,
coef_t c[4],
data_t x
) {

static data_t shift_reg[4];
acc_t acc;
int i;

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {
acc+=x*c[0];
shift_reg[0]=x;

} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}
*y=acc;

}

Code

From any C code example ..

0

2

Control Behavior

1

Finite State Machine (FSM)
states

The control is
known

Operations

Operations are
extracted…

-

==

+

>=

*

+

*

RDx

WRy

RDc

Control & Datapath Behavior

A unified control dataflow behavior is
created.

Control Dataflow

>=

-

+

==

*

+ *

WRy

-

RDx RDc

Intro to HLS 11- 8 © Copyright 2013 Xilinx

Scheduling & Binding

– Scheduling and Binding are at the heart of HLS

Scheduling determines in which clock cycle an operation will occur

– Takes into account the control, dataflow and user directives

– The allocation of resources can be constrained

Binding determines which library cell is used for each operation

– Takes into account component delays, user directives

High-Level Synthesis: Scheduling & Binding

Design Source
(C, C++, SystemC)

Scheduling Binding

RTL
(Verilog, VHDL, SystemC)

Technology

Library

User

Directives

Intro to HLS 11- 9 © Copyright 2013 Xilinx

The operations in the control flow graph are mapped into clock cycles

The technology and user constraints impact the schedule

– A faster technology (or slower clock) may allow more operations to occur in the same clock cycle

The code also impacts the schedule
– Code implications and data dependencies must be obeyed

Scheduling

void foo (

…

t1 = a * b;
t2 = c + t1;

t3 = d * t2;

out = t3 – e;

}

+

*
a
b
c

-

*d

e out

* -*+
Schedule 1

* -*+
Schedule 2

Intro to HLS 11- 10 © Copyright 2013 Xilinx

Binding is where operations are mapped to cores from the hardware library
– Operators map to cores

Binding Decision: to share
– Given this schedule:

• Binding must use 2 multipliers, since both are in the same cycle

• It can decide to use an adder and subtractor or share one addsub

Binding Decision: or not to share
– Given this schedule:

• Binding may decide to share the multipliers (each is used in a different cycle)

• Or it may decide the cost of sharing (muxing) would impact timing and it may decide not to share them

• It may make this same decision in the first example above too

Binding

* >*+

* -*+

Intro to HLS 11- 11 © Copyright 2013 Xilinx

Introduction to High-Level Synthesis

High-Level Synthesis with Vivado HLS

Language Support

Validation Flow

Summary

Outline

Intro to HLS 11- 12 © Copyright 2013 Xilinx

HLS

– Vivado HLS determines in which cycle operations should occur (scheduling)

– Determines which hardware units to use for each operation (binding)

– It performs HLS by :

• Obeying built-in defaults

• Obeying user directives & constraints to override defaults

• Calculating delays and area using the specified technology/device

Understand the priority of directives

1. Meet Performance (clock & throughput)

• Vivado HLS will allow a local clock path to fail if this is required to meet throughput

• Often possible the timing can be met after logic synthesis

2. Then minimize latency

3. Then minimize area

Understanding Vivado HLS Synthesis

Intro to HLS 11- 13 © Copyright 2013 Xilinx

The Key Attributes of C code

void fir (
data_t *y,
coef_t c[4],
data_t x
) {

static data_t shift_reg[4];
acc_t acc;
int i;

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {
acc+=x*c[0];
shift_reg[0]=x;

} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i] * c[i];

}
}
*y=acc;

}

Functions: All code is made up of functions which represent the design

hierarchy: the same in hardware

Loops: Functions typically contain loops. How these are handled can have a

major impact on area and performance

Arrays: Arrays are used often in C code. They can influence the device IO

and become performance bottlenecks

Operators: Operators in the C code may require sharing to control area or

specific hardware implementations to meet performance

Types: All variables are of a defined type. The type can influence the area

and performance

Let’s examine the default synthesis behavior of these …

Top Level IO : The arguments of the top-level function determine the

hardware RTL interface ports

Intro to HLS 11- 14 © Copyright 2013 Xilinx

Each function is translated into an RTL block
– Verilog module, VHDL entity

– By default, each function is implemented using a common instance

– Functions may be inlined to dissolve their hierarchy

• Small functions may be automatically inlined

Functions & RTL Hierarchy

void A() { ..body A..}

void B() { ..body B..}

void C() {

B();

}

void D() {

B();

}

void foo_top() {

A(…);

C(…);

D(…)

}

foo_top

A

C
B

D
B

Source Code RTL hierarchy

Each function/block can be shared like any other component (add, sub, etc) provided
it’s not in use at the same time

my_code.c

Intro to HLS 11- 15 © Copyright 2013 Xilinx

void fir (
data_t *y,
coef_t c[4],
data_t x
) {

static data_t shift_reg[4];
acc_t acc;
int i;

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {
acc+=x*c[0];
shift_reg[0]=x;

} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}
*y=acc;

}

Types = Operator Bit-sizes

Code

From any C code example ...

Operations

Operations are
extracted…

-

==

+

>=

*

+

*

RDx

WRy

RDc

Types

The C types define the size of the hardware used:
handled automatically

long long (64-bit)

int (32-bit)

short (16-bit)

char (8-bit)

double (64-bit)float (32-bit)

unsigned types

Standard C types

Arbitary Precision types

C: ap(u)int types (1-1024)

C++: ap_(u)int types (1-1024)
ap_fixed types

C++/SystemC: sc_(u)int types (1-1024)

sc_fixed types

Can be used to define any variable to be a specific bit-width (e.g. 17-bit, 47-

bit etc).

Intro to HLS 11- 16 © Copyright 2013 Xilinx

By default, loops are rolled

– Each C loop iteration � Implemented in the same state

– Each C loop iteration � Implemented with same resources

– Loops can be unrolled if their indices are statically determinable at elaboration time

• Not when the number of iterations is variable

– Unrolled loops result in more elements to schedule but greater operator mobility

• Let’s look at an example ….

Loops

void foo_top (…) {

...

Add: for (i=3;i>=0;i--) {

b = a[i] + b;

...

}

foo_top
+

Synthesis

N

a[N]
b

Loops require labels if they are to be referenced by Tcl
directives

(GUI will auto-add labels)

Intro to HLS 11- 17 © Copyright 2013 Xilinx

Example of good mobility

– The read on data port X can occur anywhere from the start to iteration 4

• The only constraint on RDx is that it occur before the final multiplication

– Vivado HLS has a lot of freedom with this operation

• It waits until the read is required, saving a register

• There are no advantages to reading any earlier (unless you want it registered)

• Input reads can be optionally registered

– The final multiplication is very constrained…

Data Dependencies: Good

void fir (
…

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;
} else {

shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}
*y=acc;

}

+

==

-

>=

RDx

*
+

==

-

>=*
+

==

-

>=*
+

==

-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -

RDcRDcRDcRDc

The read X operation has
good mobility

Default Schedule

Intro to HLS 11- 18 © Copyright 2013 Xilinx

Example of bad mobility

– The final multiplication must occur before the read and final addition

• It could occur in the same cycle if timing allows

– Loops are rolled by default

• Each iteration cannot start till the previous iteration completes

• The final multiplication (in iteration 4) must wait for earlier iterations to complete

– The structure of the code is forcing a particular schedule

• There is little mobility for most operations

– Optimizations allow loops to be unrolled giving greater freedom

Data Dependencies: Bad

void fir (
…

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;
} else {

shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}
*y=acc;

}

+

==

-

>=

RDx

*
+

==

-

>=*
+

==

-

>=*
+

==

-

>=* WRy

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - -

RDcRDcRDcRDc

Mult is very
constrained

Default Schedule

Intro to HLS 11- 19 © Copyright 2013 Xilinx

With the loop unrolled (completely)

– The dependency on loop iterations is gone

– Operations can now occur in parallel

• If data dependencies allow

• If operator timing allows

– Design finished faster but uses more operators

• 2 multipliers & 2 Adders

Schedule Summary

– All the logic associated with the loop counters and index checking are

now gone

– Two multiplications can occur at the same time

• All 4 could, but it’s limited by the number of input reads (2) on coefficient port C

– Why 2 reads on port C?

• The default behavior for arrays now limits the schedule…

Schedule after Loop Optimization

+

RDx

*

+

*
*
*

WRy

RDc

RDc

+

RDc

RDc

void fir (
…

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;
} else {

shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}
*y=acc;

}

Intro to HLS 11- 20 © Copyright 2013 Xilinx

An array in C code is implemented by a memory in the RTL

– By default, arrays are implemented as RAMs, optionally a FIFO

The array can be targeted to any memory resource in the library

– The ports (Address, CE active high, etc.) and sequential operation (clocks from address to data out)

are defined by the library model

– All RAMs are listed in the Vivado HLS Library Guide

Arrays can be merged with other arrays and reconfigured

– To implement them in the same memory or one of different widths & sizes

Arrays can be partitioned into individual elements

– Implemented as smaller RAMs or registers

Arrays in HLS

void foo_top(int x, …)

{
int A[N];

L1: for (i = 0; i < N; i++)
A[i+x] = A[i] + i;

}

N-1N-1

N-2N-2

……

11

00

SynthesisSynthesis

foo_top

DOUTDIN

ADDR

CE

WE

SPRAMBA[N]
A_outA_in

Intro to HLS 11- 21 © Copyright 2013 Xilinx

Top-level function arguments

– All top-level function arguments have a default hardware port type

When the array is an argument of the top-level function

– The array/RAM is “off-chip”

– The type of memory resource determines the top-level IO ports

– Arrays on the interface can be mapped & partitioned

• E.g. partitioned into separate ports for each element in the array

Default RAM resource

– Dual port RAM if performance can be improved otherwise Single Port RAM

Top-Level IO Ports

SynthesisSynthesis

foo_top DOUT0DIN0

ADDR0

CE0

WE0

DPRAMBvoid foo_top(int A[3*N] , int x)

{
L1: for (i = 0; i < N; i++)

A[i+x] = A[i] + i;
}

+

Number of ports defined by the
RAM resource

DIN1

ADDR1

CE1

WE1

DOUT1

Intro to HLS 11- 22 © Copyright 2013 Xilinx

With the existing code & defaults

– Port C is a dual port RAM

– Allows 2 reads per clock cycles

• IO behavior impacts performance

With the C port partitioned into (4) separate ports

– All reads and mults can occur in one cycle

– If the timing allows

• The additions can also occur in the same cycle

• The write can be performed in the same cycles

• Optionally the port reads and writes could be registered

Schedule after an Array Optimization

+

RDx

*

+

*
*
*

WRy

RDc

RDc

+

RDc

RDc

+

RDx

*

+

*
*
*

WRy

RDc

+

RDc

RDc

RDc

Note: It could have performed 2 reads in the original rolled design but
there was no advantage since the rolled loop forced a single read per

cycle

loop: for (i=3;i>=0;i--) {
if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;
} else {

shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

}
}
*y=acc;

Intro to HLS 11- 23 © Copyright 2013 Xilinx

Operator sizes are defined by the type

– The variable type defines the size of the operator

Vivado HLS will try to minimize the number of operators

– By default Vivado HLS will seek to minimize area after constraints are satisfied

User can set specific limits & targets for the resources used

– Allocation can be controlled

• An upper limit can be set on the number of operators or cores allocated for the design: This can be used to force sharing

• e.g limit the number of multipliers to 1 will force Vivado HLS to share

– Resources can be specified

• The cores used to implement each operator can be specified

• e.g. Implement each multiplier using a 2 stage pipelined core (hardware)

Operators

3 2 1 0

Use 1 mult, but take 4 cycle even if it could be done in
1 cycle using 4 mults

3 1

Same 4 mult operations could be done with 2 pipelined
mults (with allocation limiting the mults to 2)

2 0

Intro to HLS 11- 24 © Copyright 2013 Xilinx

Introduction to High-Level Synthesis

High-Level Synthesis with Vivado HLS

Language Support

Validation Flow

Summary

Outline

Intro to HLS 11- 25 © Copyright 2013 Xilinx

A Complete C Validation & Verification Environment

– Vivado HLS supports complete bit-accurate validation of the C model

– Vivado HLS provides a productive C-RTL co-simulation verification solution

Vivado HLS supports C, C++ and SystemC

– Functions can be written in any version of C

– Wide support for coding constructs in all three variants of C

Modeling with bit-accuracy

– Supports arbitrary precision types for all input languages

– Allowing the exact bit-widths to be modeled and synthesized

Floating point support

– Support for the use of float and double in the code

Support for OpenCV functions

– Enable migration of OpenCV designs into Xilinx FPGA

– Libraries target real-time full HD video processing

Comprehensive C Support

Intro to HLS 11- 26 © Copyright 2013 Xilinx

The vast majority of C, C++ and SystemC is supported

– Provided it is statically defined at compile time

– If it’s not defined until run time, it won’ be synthesizable

Any of the three variants of C can be used

– If C is used, Vivado HLS expects the file extensions to be .c

– For C++ and SystemC it expects file extensions .cpp

C, C++ and SystemC Support

Intro to HLS 11- 27 © Copyright 2013 Xilinx

Introduction to High-Level Synthesis

High-Level Synthesis with Vivado HLS

Language Support

Validation Flow

Summary

Outline

Intro to HLS 11- 28 © Copyright 2013 Xilinx

There are two steps to verifying the design

– Pre-synthesis: C Validation

• Validate the algorithm is correct

– Post-synthesis: RTL Verification

• Verify the RTL is correct

C validation

– A HUGE reason users want to use HLS

• Fast, free verification

− Validate the algorithm is correct before synthesis

• Follow the test bench tips given over

RTL Verification

– Vivado HLS can co-simulate the RTL with the

original test bench

C Validation and RTL Verification

………………
………………VHDL

Verilog
System C

Vivado HLS

Constraints/
Directives

………………

………………

C, C++,

SystemC

RTL Export

IP-XACT Sys Gen PCore

Validate C

Verify RTL

Intro to HLS 11- 29 © Copyright 2013 Xilinx

The test bench is the level above the function

– The main() function is above the function to be synthesized

Good Practices

– The test bench should compare the results with golden data

• Automatically confirms any changes to the C are validated and verifies the RTL is correct

– The test bench should return a 0 if the self-checking is correct

• Anything but a 0 (zero) will cause RTL verification to issue a FAIL message

• Function main() should expect an integer return (non-void)

C Function Test Bench

int main () {
int ret=0;
…
ret = system("diff --brief -w output.dat output.golden.dat");
if (ret != 0) {

printf("Test failed !!!\n");
ret=1;

} else {
printf("Test passed !\n");

}
…
return ret;

}

Intro to HLS 11- 30 © Copyright 2013 Xilinx

Determine the top-level function for synthesis

If there are Multiple functions, they must be merged

– There can only be 1 top-level function for synthesis

Determine or Create the top-level function

int main () {

...
func_A(a,b,*i1);

func_B(c,*i1,*i2);
func_C(*i2,ret)

return ret;

}

func_A

func_B

func_C

main.c

#include func_AB.h

func_AB(a,b,c, *i1, *i2) {
...

func_A(a,b,*i1);
func_B(c,*i1,*i2);

…
}

#include func_AB.h

int main (a,b,c,d) {
...

// func_A(a,b,i1);
// func_B(c,i1,i2);

func_AB (a,b,c, *i1, *i2);
func_C(*i2,ret)

return ret;

}

func_A

func_B

func_AB

func_C

main.c

func_AB.c

Given a case where functions func_A and

func_B are to be implemented in FPGA

Re-partition the design to create a new single

top-level function inside main()

Recommendation is to separate test

bench and design files

Intro to HLS 11- 31 © Copyright 2013 Xilinx

Introduction to High-Level Synthesis

High-Level Synthesis with Vivado HLS

Language Support

Validation Flow

Summary

Outline

Intro to HLS 11- 32 © Copyright 2013 Xilinx

In HLS

– C becomes RTL

– Operations in the code map to hardware resources

– Understand how constructs such as functions, loops and arrays are synthesized

HLS design involves

– Synthesize the initial design

– Analyze to see what limits the performance

• User directives to change the default behaviors

• Remove bottlenecks

– Analyze to see what limits the area

• The types used define the size of operators

• This can have an impact on what operations can fit in a clock cycle

Use directives to shape the initial design to meet performance

– Increase parallelism to improve performance

– Refine bit sizes and sharing to reduce area

Summary

Intro to HLS 11- 33 © Copyright 2013 Xilinx

This material exempt per Department of Commerce license exception TSU

Vivado HLS 2013.3 Version

Using Vivado HLS

© Copyright 2013 Xilinx

After completing this module, you will be able to:

– List various OS under which Vivado HLS is supported

– Describe how projects are created and maintained in Vivado HLS

– State various steps involved in using Vivado HLS project creation wizard

– Distinguish between the role of top-level module in testbench and design to be synthesized

– List various verifications which can be done in Vivado HLS

– List Vivado HLS project directory structure

Objectives

Using Vivado HLS 12 - 2 © Copyright 2013 Xilinx

Invoking Vivado HLS

Project Creation using Vivado HLS

Synthesis to IPXACT Flow

Design Analysis

Other Ways to use Vivado HLS

Summary

Outline

Using Vivado HLS 12 - 3 © Copyright 2013 Xilinx

Invoke Vivado HLS from Windows Menu

The first step is to open or create a

project

12- 4

Using Vivado HLS 12 - 4 © Copyright 2013 Xilinx

Vivado HLS GUI

Information
Pane

Project
Explorer

Pane

12- 5

Auxiliary Pane

Console
Pane

Using Vivado HLS 12 - 5 © Copyright 2013 Xilinx

Invoking Vivado HLS

Project Creation using Vivado HLS

Synthesis to IPXACT Flow

Design Analysis

Other Ways to use Vivado HLS

Summary

Outline

Using Vivado HLS 12 - 6 © Copyright 2013 Xilinx

Vivado HLS Projects and Solutions

Vivado HLS is project based

– A project specifies the source code which will be synthesized

– Each project is based on one set of source code

– Each project has a user specified name

A project can contain multiple solutions

– Solutions are different implementations of the same code

– Auto-named solution1, solution2, etc.

– Supports user specified names

– Solutions can have different clock frequencies, target technologies, synthesis

directives

Projects and solutions are stored in a hierarchical directory structure

– Top-level is the project directory

– The disk directory structure is identical to the structure shown in the GUI project

explorer (except for source code location)

Project Level

Source

Solution Level

12- 7

Using Vivado HLS 12 - 7 © Copyright 2013 Xilinx

Start a new project

– The GUI will start the project wizard to guide you through all the steps

Open an existing project

– All results, reports and directives are automatically saved/remembered

– Use “Recent Project” menu for quick access

Vivado HLS Step 1: Create or Open a project

Optionally use the Toolbar Button to

Open New Project

12- 8

Using Vivado HLS 12 - 8 © Copyright 2013 Xilinx

Project Wizard

The Project Wizard guides users through the steps of opening a new project

Define project and
directory

Add design source
files

Specify test bench
files

Specify clock and
select part

Step-by-step guide …

Project Level

Information

1st Solution

Information

Using Vivado HLS 12 - 9 © Copyright 2013 Xilinx

Define the project name

− Note, here the project is given the

extension .prj

− A useful way of seeing it’s a project (and

not just another directory) when browsing

Browse to the location of the project

– In this example, project directory “dct.prj” will

be created inside directory “lab1”

Define Project & Directory

Using Vivado HLS 12 - 10 © Copyright 2013 Xilinx

Add Design Source Files

− This allows Vivado HLS to determine the top-level design for

synthesis, from the test bench & associated files

− Not required for SystemC designs

Add Files…

– Select the source code file(s)

– The CTRL and SHIFT keys can be used to add multiple files

– No need to include headers (.h) if they reside in the same

directory

Select File and Edit CFLAGS…

− If required, specify C compile arguments using the “Edit

CFLAGS…”

− Define macros: -DVERSION1

− Location of any (header) files not in the same directory as the

source: -I../include

Add Design Source Files

There is no need to add the location of standard

Vivado HLS or SystemC header files or header

files located in the same project location

Using Vivado HLS 12 - 11 © Copyright 2013 Xilinx

Use “Add Files” to include the test bench

– Vivado HLS will re-use these to verify the RTL using co-

simulation

And all files referenced by the test bench

– The RTL simulation will be executed in a different directory

(Ensures the original results are not over-written)

– Vivado HLS needs to also copy any files accessed by the

test bench

– Input data and output results (*.dat) are shown in this

example

Add Folders

– If the test bench uses relative paths like

“sub_directory/my_file.dat” you can add “sub_directory” as

a folder/directory

Use “Edit CFLAGS…”

– To add any C compile flags required for compilation

Specify Test Bench Files

Using Vivado HLS 12 - 12 © Copyright 2013 Xilinx

The test bench should be in a separate file

Or excluded from synthesis

– The Macro __SYNTHESIS__ can be used to isolate code which will not be synthesized

• This macro is defined when Vivado HLS parses any code (-D__SYNTHESIS__)

// test.c

#include <stdio.h>
void test (int d[10]) {

int acc = 0;
int i;

for (i=0;i<10;i++) {
acc += d[i];

d[i] = acc;
}

}
#ifndef __SYNTHESIS__

int main () {
int d[10], i;

for (i=0;i<10;i++) {
d[i] = i;

}
test(d);

for (i=0;i<10;i++) {
printf("%d %d\n", i, d[i]);

}
return 0;

}
#endif

Test benches I

Design to be synthesized

Test Bench
Nothing in this ifndef will be read

by Vivado HLS
(will be read by gcc)

Using Vivado HLS 12 - 13 © Copyright 2013 Xilinx

Ideal test bench

– Should be self checking

• RTL verification will re-use the C test bench

– If the test bench is self-checking

• Allows RTL Verification to be run without a requirement to check the results again

– RTL verification “passes” if the test bench return value is 0 (zero)

• Actively return a 0 if the simulation passes

– Non-synthesizable constructs may be added to a synthesize function if __SYNTHESIS__ is used

Test benches II

int main () {

// Compare results
int ret = system("diff --brief -w test_data/output.dat test_data/output.golden.dat");
if (ret != 0) {

printf("Test failed !!!\n", ret); return 1;

} else {
printf("Test passed !\n", ret); return 0;

}

The –w option ensures the

“newline” does not cause a
difference between Windows and

Linux files

#ifndef __SYNTHESIS__

image_t *yuv = (image_t *)malloc(sizeof(image_t));
#else // Workaround malloc() calls w/o changing rest of code

image_t _yuv;
#endif

Using Vivado HLS 12 - 14 © Copyright 2013 Xilinx

Provide a solution name

– Default is solution1, then solution2 etc.

Specify the clock

– The clock uncertainty is subtracted from the clock

to provide an “effective clock period”

– Vivado HLS uses the “effective clock period” for

Synthesis

– Provides users defined margin for downstream

RTL synthesis, P&R

Select the part

− Select a device family after applying filters such

as family, package and speed grade (see next

slide)

Solution Configuration

Using Vivado HLS 12 - 15 © Copyright 2013 Xilinx

Select the target part either through

Parts or Boards specify

Select RTL Tools

– Auto

• Will select Vivado for 7 Series

and Zynq devices

• Will select ISE for Virtex-6 and earlier families

– Vivado

– ISE

• ISE Design Suite must be installed and must be included

in the PATH variable

Using Vivado HLS 12 - 16

Selecting Part and Implementation Engine

© Copyright 2013 Xilinx

Clock frequency must be specified

– Only 1 clock can be specified for C/C++ functions

– SystemC can define multiple clocks

Clock uncertainty can be specified

– Subtracted from the clock period to give an effective clock period

– The effective clock period is used for synthesis

• Should not be used as a design parameter

• Do not vary for different results: this is

your safety margin

– A user controllable margin to account

for downstream RTL synthesis and P&R

Clock Specification

Clock Period

Clock Uncertainty

Effective Clock Period

used by Vivado HLS

Margin for Logic Synthesis and
P&R

Using Vivado HLS 12 - 17 © Copyright 2013 Xilinx

A Vivado HLS Project

Console Pane

Displays Vivado HLS run time messages

Project Explorer

Project files displayed in a
hierarchal view

Information Pane

Can view and edit any file from the
Project Explorer

Auxiliary Pane

Cross-referenced with the Information Pane
(here it shows objects in the source code)

Using Vivado HLS 12 - 18 © Copyright 2013 Xilinx

Vivado HLS GUI Toolbar

The primary commands have toolbar buttons

– Easy access for standard tasks

– Button highlights when the option is available

• E.g. cannot perform C/RTL simulation before synthesis

Create a new Project

Create a new Solution

Change Solution Settings

Change Project Settings

Run C Simulation
Run C Synthesis

Export RTL

Open Reports

Open Analysis Viewer

Compare Reports

Run C/RTL Cosimulation

Using Vivado HLS 12 - 19 © Copyright 2013 Xilinx

Files: Views, Edits & Information

Open file and it will display in
the information pane

The Auxiliary pane is context sensitive with respect to the
information pane

Here it displays elements in the code which can have directives
specified on them

Using Vivado HLS 12 - 20 © Copyright 2013 Xilinx

Invoking Vivado HLS

Project Creation using Vivado HLS

Synthesis to IPXACT Flow

Design Analysis

Other Ways to use Vivado HLS

Summary

Outline

Using Vivado HLS 12 - 21 © Copyright 2013 Xilinx

Run C Synthesis

Console

– Will show run time information

– Examine for failed constraints

A “syn” directory is created

– Verilog, VHDL & SystemC RTL

– Synthesis reports for all non-inlined

functions

Report opens automatically

– When synthesis completes

Report is outlined in the

Auxiliary pane

Synthesis

Using Vivado HLS 12 - 22 © Copyright 2013 Xilinx

Vivado HLS : RTL Verification

RTL output in Verilog, VHDL and

SystemC

Automatic re-use of the C-level test

bench

Support for Xilinx simulators (XSim

and ISim) and 3rd party HDL simulators

in automated flow

RTL verification can be executed from

within Vivado HLS

Using Vivado HLS 12 - 23 © Copyright 2013 Xilinx

RTL Co-Simulation

– Vivado HLS provides RTL verification

– Creates the wrappers and adapters to re-use the C test bench

RTL Verification: Under-the-Hood

main.c(pp)

dut.c(pp)

main.c(pp)

RTL

A
d
a
p
t
e
r

A
d
a
p
t
e
r

Synthesis

DUT wrapper

• Prior to synthesis

• Test bench

• Top-level C function

• After synthesis
• Test bench

• SystemC wrapper created by Vivado HLS

• SystemC adapters created by Vivado HLS

• RTL output from Vivado HLS

• SystemC, Verilog or VHDL

There is no HDL test bench created

12- 24

Using Vivado HLS 12 - 24 © Copyright 2013 Xilinx

Vivado HLS RTL Output

– Vivado HLS outputs RTL in SystemC, Verilog and VHDL

• The SystemC output is at the RT Level

• The input is not transformed to SystemC at the ESL

RTL Verification with SystemC

– The SystemC RTL output can be used to verify the design without the need for a HDL simulator and

license

HDL Simulation Support

– Vivado HLS supports HDL simulators on both

Windows & Linux

– The 3rd party simulator executable must be in

OS search path

RTL Verification Support

12- 25

Using Vivado HLS 12 - 25 © Copyright 2013 Xilinx

Simulator Linux Windows

XSim (Vivado Simulator) Supported Supported

ISim (ISE Simulator) Supported Supported

Mentor Graphics ModelSim Supported Supported

Synopsys VCS Supported Not Available

NCSim Supported Not Available

Riviera Supported Supported

Start Simulation

– Opens the dialog box

Select the RTL

– SystemC does not require a 3rd party license

– Verilog and VHDL require the appropriate simulator

• Select the desired simulator

– Run any or all

Options

– Can output trace file (VCD format)

– Optimize the C compilation & specify test bench linker flags

– The “setup only” option will not execute the simulation

OK will run the simulator

– Output files will be created in a “sim” directory

C/RTL Co-simulation

The SystemC simulation can always
be run: no simulator license required!

Using Vivado HLS 12 - 26 © Copyright 2013 Xilinx

Simulation output is shown in the console

Expect the same test bench response

– If the C test bench plots, it will with the RTL

design (but slower)

Sim Directory

– Will contain a sub-directory for each RTL

which is verified

Report

– A report is created and opened automatically

Simulation Results

Using Vivado HLS 12 - 27 © Copyright 2013 Xilinx

Vivado HLS : RTL Export

RTL output in Verilog, VHDL and SystemC

Scripts created for RTL synthesis tools

IP-XACT and SysGen => Vivado HLS for 7 Series

and Zynq families

PCore => Only Vivado HLS Standalone for all

families

RTL Export to IP-XACT, SysGen, and Pcore formats

Using Vivado HLS 12 - 28 © Copyright 2013 Xilinx

RTL Export

– Can be exported to one of the three types

• IP-XACT formatted IP for use with Vivado System Edition (SE)

� 7 Series and Zynq families only

• A System Generator IP block

� 7 Series and Zynq families only

• Pcore formated IP block for use with EDK

� 7 Series, Zynq, Spartan-3, Spartan-6, Virtex-4/5/6 families

Generation in both Verilog and VHDL for non-bus or non-interface based designs

Logic synthesis will automatically be performed

– HLS license will use Vivado RTL Synthesis

RTL Export Support

12- 29

Using Vivado HLS 12 - 29 © Copyright 2013 Xilinx

RTL Synthesis can be performed to evaluate the RTL

– IP-XACT and System Generator formats: Vivado synthesis performed

– Pcore format: ISE synthesis is performed

RTL synthesis results are not included with the IP package

– Evaluate step is provided to give confidence

• Timing will be as estimate (or better)

• Area will be as estimated (or better)

– Final RTL IP is synthesized with the rest of the RTL design

• RTL Synthesis results from the Vivado HLS evaluation are not used

RTL Export: Synthesis

project.prj

solution1

impl

verilog vhdl ip sysgen pcore

syn sim

solutionN

IP RepositoriesRTL Synthesis Results

Using Vivado HLS 12 - 30 © Copyright 2013 Xilinx

IP can be imported

into other Xilinx tools

RTL Export: IP Repositories

project.prj

solution1

impl

ip sysgen pcore

syn sim

solutionN

In Vivado :

1. Project Manager > IP Catalog

2. Add IP to import this block

3. Browse to the zip file inside “ip”

In System Generator :

1. Use XilinxBlockAdd

2. Select Vivado_HLS block type

3. Browse to the solution directory
In EDK :

1. Copy the contents of the “pcore” direcory

2. Paste into the EDK project pcore direcotry

3. Project > Rescan Local Repository

Using Vivado HLS 12 - 31 © Copyright 2013 Xilinx

Project Directory
Top-level project directory

(there must be one)

Solution directories
There can be multiple solutions for each project. Each

solution is a different implementation of the same

(project) source code

Click on Export RTL

– Export RTL Dialog opens

Select the desired output format

Optionally, configure the output

Select the desired language

Optionally, click on Evaluate button

for invoking implementation tools

from within Vivado HLS

Click OK to start the implementation

RTL Export for Implementation

Using Vivado HLS 12 - 32 © Copyright 2013 Xilinx

Impl directory created

– Will contain a sub-directory for each RTL which

is synthesized

Report

– A report is created and opened automatically

RTL Export (Evaluate Option) Results

Using Vivado HLS 12 - 33 © Copyright 2013 Xilinx

Impl directory created

– Will contain a sub-directory for both VHDL and Verilog

along with the ip directory

No report will be created

Observe the console

– No packing, routing phases

RTL Export Results (Evaluate Option Unchecked)

Using Vivado HLS 12 - 34 © Copyright 2013 Xilinx

Invoking Vivado HLS

Project Creation using Vivado HLS

Synthesis to IPXACT Flow

Design Analysis

Other Ways to use Vivado HLS

Summary

Outline

Using Vivado HLS 12 - 35 © Copyright 2013 Xilinx

Perspective for design analysis

– Allows interactive analysis

Using Vivado HLS 12 - 36

Analysis Perspective

© Copyright 2013 Xilinx

Performance Analysis

Using Vivado HLS 12 - 37 © Copyright 2013 Xilinx

Resources Analysis

Using Vivado HLS 12 - 38 © Copyright 2013 Xilinx

Invoking Vivado HLS

Project Creation using Vivado HLS

Synthesis to IPXACT Flow

Design Analysis

Other Ways to use Vivado HLS

Summary

Outline

Using Vivado HLS 12 - 39 © Copyright 2013 Xilinx

Vivado HLS can also be run in batch mode
– Opening the Command Line Interface (CLI) will give a shell

– Supports the commands required to run Vivado HLS & pre-synthesis verification (gcc, g++, apcc, make)

Command Line Interface: Batch Mode

12- 40

Using Vivado HLS 12 - 40 © Copyright 2013 Xilinx

Invoke Vivado HLS in interactive mode

– Type Tcl commands one at a time

Execute Vivado HLS using a Tcl batch file

– Allows multiple runs to be scripted and automated

Open an existing project in the GUI

– For analysis, further work or to modify it

Use the shell to launch Vivado HLS GUI

Using Vivado HLS CLI

> vivado_hls –i

> vivado_hls –p my.prj

> vivado_hls –f run_aesl.tcl

> vivado_hls

12- 41

Using Vivado HLS 12 - 41 © Copyright 2013 Xilinx

When the project is created

– All Tcl command to run the project are created in script.tcl

• User specified directives are placed in directives.tcl

– Use this as a template from creating Tcl scripts

• Uncomment the commands before running the Tcl script

Using Tcl Commands

Using Vivado HLS 12 - 42 © Copyright 2013 Xilinx

Help is always available

– The Help Menu

– Opens User Guide, Reference Guide and Man Pages

In interactive mode

– The help command lists the man page for all commands

Help

Vivado_hls> help add_files

SYNOPSIS
add_files [OPTIONS] <src_files>

Etc…

Auto-Complete all commands using the tab
key

Using Vivado HLS 12 - 43 © Copyright 2013 Xilinx

Invoking Vivado HLS

Project Creation using Vivado HLS

Synthesis to IPXACT Flow

Design Analysis

Other Ways to use Vivado HLS

Summary

Outline

Using Vivado HLS 12 - 44 © Copyright 2013 Xilinx

Vivado HLS can be run under Windows XP, Windows 7, Red Hat Linux, and SUSE OS

Vivado HLS can be invoked through GUI and command line in Windows OS, and

command line in Linux

Vivado HLS project creation wizard involves

– Defining project name and location

– Adding design files

– Specifying testbench files

– Selecting clock and technology

The top-level module in testbench is main() whereas top-level module in the design is

the function to be synthesized

Summary

12- 45

Using Vivado HLS 12 - 45 © Copyright 2013 Xilinx

Vivado HLS project directory consists of

– *.prj project file

– Multiple solutions directories

– Each solution directory may contain

• impl, synth, and sim directories

• The impl directory consists of pcores, verilog, and vhdl folders

• The synth directory consists of reports, systemC, vhdl, and verilog folders

• The sim directory consists of testbench and simulation files

Summary

Using Vivado HLS 12 - 46 © Copyright 2013 Xilinx

This material exempt per Department of Commerce license exception TSU

Vivado HLS 2013.3 Version
ZedBoard

Lab1 Intro

Vivado HLS Design Flow

© Copyright 2013 Xilinx

After completing this lab, you will be able to:

– Create a project in Vivado HLS

– Run C-simulation

– Use debugger

– Synthesize and implement the design using the default options

– Use design analysis perspective to see what is going on under the hood

– Understand and analyze the generated output

Objectives

Lab1 Intro 12a- 2 © Copyright 2013 Xilinx

This lab uses a simple matrix multiplication example to walk you through the Vivado

HLS project creation and analysis steps. The design consists of three nested loops.

The Product loop is the inner most loop performing the actual elements product. The

Col loop is the outer-loop which feeds next column element data with the passed row

element data to the Product loop. Finally, Row is the outer-most loop. The res[i][j]=0

(line 79) resets the result every time a new row element is passed and new column

element is used

Lab1 Intro 12a- 3

The Design

© Copyright 2013 Xilinx

Create a project after starting Vivado HLS in GUI mode

Run C simulation
– to understand the design behavior

Run the debugger
– to see how the top-level module works

Synthesize the design

Analyze the generated output using the Analysis perspective

Run C/RTL cosimulation
– to perform RTL simulation

View simulation results in Vivado
– to understand the IO protocol

Export RTL in the Evaluate mode and run the implementation

Lab1 Intro 12a- 4

Procedure

© Copyright 2013 Xilinx

In this lab, you completed the major steps of the high-level synthesis design flow using

Vivado HLS. You created a project, added source files, synthesized the design,

simulated the design, and implemented the design. You also learned that how to use the

Analysis perspective to understand the scheduling

Lab1 Intro 12a- 5

Summary

© Copyright 2013 Xilinx

