

Objectives

> After completing this module, you will be able to:

- Describe the high level synthesis flow
- Understand the control and datapath extraction
- Describe scheduling and binding phases of the HLS flow
- List the priorities of directives set by Vivado HLS
- List comprehensive language support in Vivado HLS
- Identify steps involved in validation and verification flows

Intro to HLS 11- 2

© Copyright 2013 Xilinx

€ XILINX > ALL PROGRAMMABLE.

> How is hardware extracted from C code?

- Control and datapath can be extracted from C code at the top level

- The same principles used in the example can be applied to sub-functions
 - · At some point in the top-level control flow, control is passed to a sub-function
 - · Sub-function may be implemented to execute concurrently with the top-level and or other sub-functions

> How is this control and dataflow turned into a hardware design?

- Vivado HLS maps this to hardware through scheduling and binding processes

> How is my design created?

- How functions, loops, arrays and IO ports are mapped?

Intro to HLS 11- 6

The Key Attributes of C code				
-				
void fir (data_t*y,	Functions: All code is made up of func hierarchy: the same in hardware	ctions which represent the design		
coef_tc[4], data_tx) {	Top Level IO: The arguments of the to hardware RTL interface ports	op-level function determine the		
static data_t shift_reg[4]; acc_tacc; int i;	Types: All variables are of a defined type. The type can influence the area and performance			
acc=0; loop; for (i=3;i=0;i=); if (i==0; ; acc==x^c(0); (shift reg(0)=x;	Loops: Functions typically contain loop major impact on area and performance	ps. How these are handled can have a		
) else { shift_reg[i]=shift_reg[i-1]; acc+=shift_reg[i] * [c[i]; } }	<u>Arrays</u> : Arrays are used often in C code. They can influence the device IO and become performance bottlenecks			
*y=acc; } Operators: Operators in the C code may require sharing to control area or specific hardware implementations to meet performance				
Let's examine the default synthesis behavior of these				
Intro to HLS 11- 14	© Copyright 2013 Xilinx	XILINX ➤ ALL PROGRAMMABLE.		

Comprehensive C	Support	
A Complete C Validation	on & Verification Environment	
 Vivado HLS supports co 	omplete bit-accurate validation of the C mod	del
 Vivado HLS provides a 	productive C-RTL co-simulation verification	solution
Vivado HLS supports C	C, C++ and SystemC	
 Functions can be written 	n in any version of C	
 Wide support for coding 	constructs in all three variants of C	
Modeling with bit-accu	racy	
 Supports arbitrary precis 	sion types for all input languages	
 Allowing the exact bit-w 	idths to be modeled and synthesized	
Floating point support		
 Support for the use of flucture 	oat and double in the code	
Support for OpenCV fu	Inctions	
 Enable migration of Operation 	enCV designs into Xilinx FPGA	
 Libraries target real-time 	e full HD video processing	
Intro to HLS 11-26	© Copyright 2013 Xilinx	€ XILINX ➤ ALL PROGRAMMABLE.

Determine or Create the top-level function			
 Determine the top-level function for If there are Multiple functions, they There can only be 1 top-level function 	r synthesis 7 must be merged for synthesis		
Given a case where functions func_A and func_B are to be implemented in FPGA main.c int main (func_A(a,b,*i1)); func_B(c,*i1,*i2); func_B(c,*i1,*i2); func_C(*i2,ret) return ret; }	Re-partition the design to create a new single top-level function inside main() main.c finclude func_AB.h int main (a,b,c,d) {		
Recommend benc	#include func_AB.h func_AB(a,b,c,'11, '12) { iation is to separate test h and design files		
Intro to HLS 11- 31	© Copyright 2013 Xilinx		

S	um	m	2	rv
	uII		a	ı y

> In HLS

- C becomes RTL
- Operations in the code map to hardware resources
- Understand how constructs such as functions, loops and arrays are synthesized

> HLS design involves

- Synthesize the initial design
- Analyze to see what limits the performance
 - User directives to change the default behaviors
 - Remove bottlenecks
- Analyze to see what limits the area
 - The types used define the size of operators
 - · This can have an impact on what operations can fit in a clock cycle

> Use directives to shape the initial design to meet performance

- Increase parallelism to improve performance
- Refine bit sizes and sharing to reduce area

Intro to HLS 11- 33

© Copyright 2013 Xilinx

EXILINX > ALL PROGRAMMABLE.

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Test be	nches II				
▶ Ideal test – Should • RTL	bench be self checking verification will re-use the C test benc	h			
 If the te Allow RTL ve Activ 	est bench is self-checking s RTL Verification to be run without a rification "passes" if the test bence ely return a 0 if the simulation passes	a requirement to che ch return value is	eck the results again 0 (zero)		
	<pre>int main () { // Compare results // Compare results int ret = system("diffbrief -w test_data/output.dat tes if (ret 1= 0) { printf("Test failed !!!\n", ret); return 1; } else { printf("Test passed !\n", ret); return 0; } }</pre>	t_data/output.golden.dat");		The -w option ensures the "newline" does not cause a difference between Windows and Linux files	
– Non-sy	nthesizable constructs may be ac #ifndefSYNTHESIS	dded to a synthes	ize function ifS	YNTHESISis used	
Using Vivado HLS 12 - 14		© Copyright 2013 Xilinx	•	€ XILINX > ALL PROGR	AMMABLE.

Help Help is always available - The Help Menu - Opens User Guide Reference	Guide and Man Pages	
Commands: □ Console () Errors () Warnings () Man Page () □ Commands: □ Open_project □ open_solution set_directive_array_map set_directive_array_partition set_directive_array_partition set_directive_array_reshape set_directive_array_reshap	SYNTAX Set_clock_uncertainty [OPTIONS] < UESCRIPTION The set_clock_uncertainty comman the clock period to create an effective the clock period to create an effective the clock period to create an effective an page for all commands	uncertainty> <clock_list></clock_list>
Using Vivado HLS 12 - 43	© Copyright 2013 Xilinx	🗶 XILINX 🌶 ALL PROGRAMMABL

Objectives

> After completing this lab, you will be able to:

- Create a project in Vivado HLS
- Run C-simulation
- Use debugger
- Synthesize and implement the design using the default options
- Use design analysis perspective to see what is going on under the hood
- Understand and analyze the generated output

Lab1 Intro 12a- 2

© Copyright 2013 Xilinx

EXILINX > ALL PROGRAMMABLE.

Procedure		
Create a project after s	tarting Vivado HLS in GUI mode	
> Run C simulation	-	
 to understand the design 	n behavior	
Run the debugger		
 to see how the top-level 	module works	
Synthesize the design		
Analyze the generated	output using the Analysis perspectiv	re
Run C/RTL cosimulation	n	
 to perform RTL simulation 	on	
View simulation results	s in Vivado	
 to understand the IO pro 	otocol	
Export RTL in the Evaluation	uate mode and run the implementation	on
Lab1 Intro 12a- 4	© Copyright 2013 Xilinx	🛍 XILINX > ALL PROGRAMMABLE.

Summary		
In this lab, you compl Vivado HLS. You crea simulated the design, Analysis perspective	leted the major steps of the high-level s ated a project, added source files, synt , and implemented the design. You also to understand the scheduling	synthesis design flow using hesized the design, o learned that how to use the
Lab1 Intro 12a- 5	© Copyright 2013 Xilinx	