
Development Issues in Using FPGAs for Image Processing

K.T. Gribbon1, D.G. Bailey1, and A. Bainbridge-Smith2

1 Institute of Information Sciences and Technology, Massey University
2 Department of Electrical and Computer Engineering, University of Canterbury

Email: k.gribbon@massey.ac.nz

Abstract
Field programmable gate arrays (FPGAs) offer many performance benefits for executing image processing
applications. Developing the algorithms to solve image processing problems is one aspect of using FPGAs; these
algorithms must then be mapped to the FPGA. Mapping an algorithm requires building and utilising FPGA-
specific hardware (such as fast multipliers and block RAM) on an open architecture platform. This is
fundamentally different to the design of software for the fixed architectures of conventional processors.
Although software techniques may help define the image processing algorithm and facilitate its programming,
they will provide little guidance on how to manage hardware specific issues such as concurrency and pipelining.
As part of our aim to define new techniques that address these issues in an image processing context we present
the complete design cycle and use it to elucidate some of the important considerations in the progression from
problem specification to an FPGA-based implementation.

Keywords: FPGA, design cycle, algorithm development, architecture

1 Introduction
Semiconductor manufacturers are no longer relying
upon increasing clock speeds to increase processor
performance. Heat dissipation and power
consumption become increasingly problematic at high
clock speeds (above 3 GHz) calling for other
techniques to be considered [1]. One option is to
leverage concurrency by building chips incorporating
multiple processors. This solution is being widely
adopted in the market with multi-core processors now
standard on new computers and gaming consoles.

Although consumers are just beginning to experience
the benefits of concurrency, parallel architectures
have played an important role in image processing
(IP) since the 1960s [2]. Systems such as the INMOS
transputer and data cube have been used to solve
complex vision problems where conventional single-
processor architectures have not achieved the desired
speed of processing.

Today, FPGAs (field programmable gate arrays) are
emerging as a useful parallel platform for executing
demanding IP algorithms. FPGAs consist of a large
array of parallel logic and a large number of I/O pins
for data access, as shown in Figure 1. This general
and unspecified structure can be easily exploited to
implement both spatial and temporal parallelism.
These are common in IP applications and thus
significant computation advantages can be achieved.

Figure 1: An FPGA consists of logic “islands” in a
“sea” of routing, which may be exploited for massive

parallelism. Figure taken from Trimberger [3].

Using FPGAs to accelerate IP algorithms presents
several challenges. One simply relates to Amdahl’s
law: a large proportion of the algorithm must lend
itself to parallelisation to achieve substantial speedup
[4]. Based on this Herbodt et al conclude that FPGA
performance is “unusually sensitive to the
implementation’s quality” (p. 50, [4]). Therefore it is
important to develop an appropriate algorithm to
exploit available parallelism.

Unfortunately, this is not as simple as parallelizing the
code of a software algorithm as one would when
porting single-processor applications to multi-core or
traditional parallel computing systems. One reason is
that current hardware languages and compilers are
still maturing [5]. The problem is made more difficult
due to an FPGA’s general structure which is not
limited to two or four fixed processors such as on
current dual or quad-core chips. Instead they have the
potential to be massively parallel, with the number of
processors limited only by the density of the logic.
For a given application one could build a large

K. T. Gribbon, D. G. Bailey, A. Bainbridge-Smith, ‘Development Issues in Using
FPGAs for Image Processing’, Proceedings of Image and Vision Computing New Zealand
2007, pp. 217–222, Hamilton, New Zealand, December 2007.

217

number of simple parallel processors in a
configuration such as a systolic array, a full hardware
solution, a soft-core processor or any combination of
the above. As an FPGA’s structure is not fixed, one
must develop both the algorithm and the architecture
on which it is implemented. This complicates design
because it must performed at the high-level
(algorithmic) and low-level (architecture selection,
pipelining, memory management) simultaneously.

Therefore, traditional software engineering techniques
cannot be relied upon exclusively. To address these
issues our research group has been investigating
techniques that lower developmental effort when
implementing IP algorithms on FPGAs. To date our
research efforts have focused on VERTIPH, a visual
programming language to help designers
conceptualise and implement IP algorithms on FPGAs
[6], GATOS, a windowed operating system to aid in
the debugging of IP algorithms [7] and an extension
of design pattern methodology to capture generalized
solutions to FPGA design problems [8].

As part of identifying potential development issues
we have found it useful to consider the development
process holistically. In this paper we present the
complete design cycle which we use to explore
several important development issues. Section 2
considers some of the challenges stemming from the
differences between software and FPGA design.
Section 3 presents the complete design cycle for an
FPGA-based system. Sections 4, 5 and 6 examine
some of the important issues in each stage of the
cycle. Section 7 addresses design flow. Summary and
conclusions follow in section 8.

2 Hardware Challenges
Image processing is often viewed as a software
engineering problem [9]. Although important in the
development and implementation of algorithms,
software design is often given prominence over other
aspects of the system. Applied image processing is
really a systems engineering problem because there
are other important aspects to consider such as
lighting, optics and integration with supporting
hardware and machinery [10]. Design with FPGAs
fits well into a systems engineering context because it
is performed at several different levels. These include
high-level algorithmic design down to bit-level
operation design.

Although the flexibility is available to work at the bit-
level, designers do not want to spend all their time
there. Schematic entry and HDLs are often too low-
level as design tools because they do not capture the
algorithmic nature of image processing functions
adequately. Design at this level is complex, tedious
and error prone [11]. An alternative that aids
programmer productivity and more closely matches
algorithmic design are high-level languages that infer
circuitry using a hardware compiler. In this context

FPGA configurations may resemble traditional high-
level languages like C, but specify hardware not
software [4]. One advantage with this approach is that
traditional software techniques can be co-opted to
help write code. The danger is the temptation to port
software algorithms to hardware because of the
similarities between the languages. These similarities
are often superficial in the sense that the hardware
configuration has merely undergone a representational
change. This leads to the implementation being
‘constrained’ by the algorithm because the approach
assumes that good software algorithms make good
hardware algorithms. This is often untrue for the
following reasons:

• Optimal processing modes differ on an FPGA
[4]. Random-access and pointer-based operations
are efficient in software. A typical processing
scenario involves grabbing a frame and moving it
to main memory. The processor can then
sequentially process pixels, affording random
access to the image. On an FPGA this can be
highly inefficient and costly.

• Clock speeds are typically an order of magnitude
slower than processors due to delay overheads
through the general routing matrix. Therefore
configurations must exploit parallelism rather
than relying solely upon a high rate of processing.

• Sequential processing of software code avoids
contention for system resources. An FPGA’s
potential for massive parallelism frequently
complicates arbitration and creates contention for
memory and shared processors.

• Lack of an operating system complicates
management of ‘thread’ scheduling, memory, and
system devices, which must be managed
manually.

Based on these reasons, a more suitable algorithm
may exist that can better exploit the available
parallelism of the selected architecture. However,
modifying an algorithm and designing the
computational and memory architecture requires extra
development effort on the part of the system designer.
Given these challenges we now present the complete
design cycle which will allow deeper exploration of
some of these issues.

3 Design Cycle
We believe the complete development of an image
processing application for an FPGA-based system
involves four stages: problem specification, algorithm
development, architecture selection and
implementation. Descriptions and logical relationships
between the stages are shown in Figure 2.

218

Problem specification

Algorithm

Architecture

Implementation

Defines problem, provides
context and outlines the set of
functional and engineering
constraints that need to be met
for a proposed solution to be
successful.

The high-level sequence of
operations that transforms the
input image(s) to the desired
output, fulfilling the image
processing requirements given
in the problem specification.

The conceptual design and
operational structure of the
system including memory
a r c h i t e c t u r e , p r o c e s s o r
architecture, bus widths and
hardware interfaces.

The implemented software and/
o r h a rd w a r e s y s t em t h a t
embodies the algorithm and
supports its execution.

Figure 2: Stages in the design cycle.

As the problem specification stage is common to
software engineering design (and indeed any
engineering design) we will focus our attention upon
the following three stages of Figure 2 and
corresponding FPGA specific issues.

4 Algorithm level
The development of an algorithm can be regarded as a
problem solving task, where the aim is to find a
sequence of mathematical (image processing)
operations that progressively transform the image into
the desired result, satisfying the functional
requirements outlined in the problem specification.
Several approaches can be applied to development
which have remained largely unchanged since the
1980’s [12].

4.1 Selecting Algorithms

A simple mapping of a software implementation into
hardware often falls short of the potential benefits
offered by an FPGA solution as they do not tend to
leverage concurrency. These sequential algorithms
must be redesigned.

For example, the classic connected components
algorithm requires two raster-scan passes through the
image. On the first pass, a label is assigned to each
pixel based upon the connection between pixels in a
local neighbourhood. Multi-branch (“U” shaped)
objects have multiple labels applied during the scan
and must be relabelled for consistency in the second
pass. The classic algorithm assumes that memory is
available to perform image buffering of the
intermediate labelled image between the first and
second pass.

On an FPGA, on-chip memory resources are limited.
Implementing the classic algorithm on an FPGA
would require off-chip buffering which adds to the
system cost. If we can develop and use a one-pass
algorithm we could process images streamed directly

from a camera. Given an appropriate stream
processing architecture (to convert spatial distribution
into a temporal stream) it may then be possible to
eliminate image buffering altogether.

To achieve this it is necessary to perform the merging
and relabelling operations on the fly and in parallel.
As we do not wish to retain image data, the features
of each connected component must also be
accumulated in parallel as the image is scanned. This
removes the need for producing a labelled image and
saves having to perform the second, relabelling pass.

5 Architecture level
Figure 2 shares much in common with the traditional
software engineering lifecycle. The problem is
defined, algorithms are developed and then
implemented. However, software design assumes an
underlying hardware architecture. With an FPGA we
should seek to tailor the architecture for the
application. This is the purpose of the architecture
stage in Figure 2.

In the connected component labelling application the
preprocessing operations (typically local filters and
point operations), necessary to segment objects from
the background, are ideally suited to stream-based
processing without image buffering. By utilising a
stream processing architecture (which includes an
appropriate memory architecture for the local filters)
coupled with the one pass algorithm mentioned
above, the requirement of image buffering could be
removed altogether. An FPGA-based system such as
an embedded smart camera could then process a
progressively scanned image directly without any off-
chip buffering.

Although most preprocessing operations are amenable
to stream processing and can be implemented
efficiently on an FPGA, some operations can not. For
example, performing recognition tasks on the labelled
image using a neural network may not translate well
into an FPGA implementation.

In general, higher-level image processing tasks can be
harder to implement in custom hardware and tend to
underutilise the hardware because they may not be
run as often (e.g. recognition tasks run once per frame
as opposed to preprocessing operations which need to
be run for each pixel in an image scan). This can leave
hardware idle for long periods of time which is often
an ineffective use of the limited logic resources. An
alternative is to implement some of these tasks in
software by synergistically combining FPGAs and
serial processors in a single system. This is an
example of reconfigurable computing, which is
becoming an increasingly important paradigm in high
performance computing [11].

219

5.1 System Configuration

The degree to which an FPGA is yoked to a processor
is termed coupling. Two useful configurations are
hosted and standalone. In a hosted configuration, the
FPGA is utilised as a co-processor to a conventional
processor. As a co-processor, the FPGA’s role is to
complement the host computer by accelerating the
portion of the algorithm that takes most of the
execution time.

These tasks are likely to be low-level (pixel-based)
image processing operations, which an FPGA is more
suited to performing. The host computer is usually
responsible for “front end” tasks such as image
capture, display and user interaction. To facilitate co-
operation, shared memory is required to transfer the
raw and processed image data between the two
devices.

In a standalone configuration, the host computer is
dispensed with, and all tasks are performed directly
on the FPGA.

Hosted and standalone configurations represent two
possible options on a wide coupling spectrum. At one
end are full hardware solutions, at the other full
software solutions; in between are several options at a
range of granularities. For example, implementations
needn’t be executed on off-the-shelf processors. A
simple controller like a finite state machine can be
built very easily on the FPGA fabric. These may be
useful for performing intermediate-level tasks with
low processing requirements. If more complicated
processing is required a full-blown processor may be
required Building a soft-core processor provides
several advantages. Instruction sets can be customised
for efficiency and wiring delays are minimised. High
development costs can be offset against software
programmability; the same FPGA configuration can
be used for several applications and a custom parallel
computer can be built very quickly [13].

5.2 Memory Architecture

Memory configuration is another important
architectural issue. Although there are several
different memory resources in serial processor
systems (processor cache, RAM etc.), when writing
software the programmer typically has access to two
types of memory: registers and external memory. In
contrast a designer has access to a range of different
memory resources at differing granularities available
for FPGAs. An FPGA may have access to:

• Individual registers within logic blocks

• Logic blocks configured as look up tables

• Small blocks of dedicated contiguous
memory

• Off-chip memory

These resources should be exploited appropriately.
For example, registers can be used to store an array or
buffer intermediate values in a pipeline. On the other
hand, the small blocks of dedicated memory (often
referred to as block RAM) are ideally suited to row
buffering which is necessary for local filtering. Block
RAM is usually sufficient to buffer several rows of an
image while off-chip memory is often necessary for
applications that require frame buffering, such as
image warping and geometric transforms.

6 Implementation level
After thinking through the architecture we must think
about how to specify the operations efficiently in the
presence of timing, resource and bandwidth
constraints. Testing of the implementation for
debugging purposes is also necessary but is harder to
accomplish on an FPGA.

Good design can be accomplished by using
techniques such as pipelining (fine and coarse grain),
utilising look up tables, CORDIC functions, and
making function approximations. It is also useful to
draw a data flow diagram early on to identify parallel
branches between and within operations in the
algorithm. We have been capturing and formally
documenting such techniques using hardware design
patterns which we believe are an appropriate means
for recording and transferring the required knowledge
needed to implement these techniques [8].

6.1 Pipelining

Fine-grain pipelining is an important technique to
exploit the temporal parallelism inherent in stream
data, which in an image processing context, is
commonly generated by a video source.

Simply performing the required operations in the
algorithm on each pixel in sequence often leads to
long combinatorial delays which can easily exceed the
input rate of the stream. A pipeline on the other hand
accepts an input pixel value from the stream and
outputs a processed pixel value each clock cycle with
several clock cycles of latency, equal to the number of
pipeline stages, between the input and output. At any
instant, stages of the pipeline will contain pixels at
successive stages of processing. This allows several
pipeline stages each for the evaluation of complex
operations.

A video stream may contain a mixture of pixel and
control data in the form of tokens to indicate the start
of a new frame or line. Therefore mechanisms must
be available to prime, flush and stall the pipeline. This
complicates pipeline management. Priming for image
processing operations is often difficult and error prone
because of the need to start processing before the first
item of valid data is available. Flushing is also
difficult as the pipeline must continue to run until all
valid data has finished processing.

220

6.2 Debugging
Once we have developed our FPGA implementation
we are likely to want to test it for debugging purposes.
Conventional hardware verification paradigms are
impractical for this purpose. The problem stems from
the large volume of data contained within an image.
With complex algorithms, it is extremely difficult to
design test vectors that exercise all of the
functionality of the system, especially when there
may be complex interactions. In image processing, the
problem is even more difficult, because the algorithm
may be working perfectly as designed, but it may not
be appropriate or adequate for the task to which it is
applied. Validation using test vectors will only verify
that the algorithm is implemented correctly, and not
whether the correct algorithm is actually being used.
When processing video, this is exacerbated by the
dynamic nature of the data being processed.

Simulation of the configuration prior to in-circuit
testing is desirable. However, on the development
platform (which is most likely a general-purpose
computer) simulation is of limited value in judging
final performance because a parallel architecture must
be simulated on a serial architecture, which is very
slow. The performance of a real-time application
processing a continuous, noisy, video stream is
difficult to evaluate without actually having the final
system.

In-circuit debugging is significantly more complex
and troublesome on an FPGA particularly in
standalone configuration which lacks an operating
system to manage basic tasks such as user interaction
and peripheral interfacing. For in-circuit testing
additional debug circuitry must be built in tandem to
perform these tasks even if they are not required in
the final system. For example, circuitry to drive a
display was needed during development of an object
tracking application to perform lens calibration,
tuning and to verify correctness despite the output
being a set of integer coordinates that are passed on to
another subsystem [14]. Building debug circuitry also
reduces the amount of logic available to the
application.

To address some of these issues we have proposed the
Gate Array Terminal Operating System (GATOS)
which provides a set of high-level IP blocks to
implement the graphical user interface of an
interactive windowing operating system [7].

7 Design Flow
The logical progression through the development
stages is shown in Figure 2. For example, algorithm
development precedes architecture selection because
that way the architecture is tailored specifically to the
algorithm.

In practice however, this flow may be interrupted. We
have alluded to the iterative nature of the development
process throughout the paper. Iteration is usually
required to achieve acceptable performance and
functionality. It is also required due to the
interdependency between the stages. Changes made in
one stage may inadvertently affect another. For
example, significant modifications may be made to an
existing algorithm to make it more suitable for
hardware implementation, such as in the connected
component labelling application. When these changes
are made the algorithm should be re-tested (back in
the image processing development environment).

In addition to the iterative nature of the practical flow,
development stages can be entered out of order.
Several practical permutations of the design process
exist. For example, consider Figure 3 which reflects
the practical flow that we took in the development of
the object tracking algorithm mentioned above.

Figure 3: Practical permutation of development
process.

In [14] the architecture was implicitly selected
because we wanted to use a specific FPGA
development board and thus the system architecture
was predefined. The algorithm was then shaped to fit
the architecture.

To achieve this, the flow alternated between the
algorithm and implementation stages, as Figure 3
shows. Each operation in the processing chain was
developed, implemented and tested in circuit on the
FPGA. The algorithm and implementation were
effectively developed in lock-step with one another.
This method can be thought of as an attempt to
develop the algorithm directly on an FPGA. At the
completion of the development process, it was found
that a filter operation needed to be inserted into the
algorithm to account for troublesome noise [14],
requiring further iteration.

8 Summary
FPGAs offer many performance benefits for
implementing image processing algorithms. Their
general structure can be configured to exploit both
spatial and temporal parallelism inherent in images.
However, obtaining these benefits can come at
significant development cost because an algorithm

221

and architecture must be simultaneously developed
for an application.

This aspect, which is peculiar to FPGA-based
development, needs to be reflected in the design
cycle. Appropriate hardware design should be
performed to select the computational and memory
architecture in addition to defining the problem
specification, developing an algorithm, and
implementing the system (which are also common
stages of software design).

Other development issues encountered while
following the design cycle include an operating clock
frequency one tenth that of a conventional processor,
lack of an operating system to oversee common tasks,
inefficiency of random access and pointer-based
operations and a complex debugging process.

To address these issues we are actively working in
several different areas: visual programming languages
for hardware [6], windowed operating system for
debugging, calibration and tuning [7] and design
patterns for capturing and transferring useful
implementation techniques [8].

9 References
[1] G. Ottoni, R. Rangan, A. Stoler, M. J. Bridges,

and D. I. August, "From sequential programs to
concurrent threads," IEEE Computer
Architecture Letters, vol. 5, pp. 6-9, 2006.

[2] M. Maresca, M. A. Lavin, and H. Li, "Parallel
Architectures for Vision," Proceedings of the
IEEE, vol. 76, pp. 970-981, 1988.

[3] S. M. Trimberger, Field-Programmable Gate
Array Technology. Massachusetts, USA:
Kluwer Academic Publishers, 1999.

[4] M. C. Herbordt, T. VanCourt, Y. Gu, B.
Sukhwani, A. Conti, J. Model, and D.
DiSabello, "Achieving High Performance with
FPGA-Based Computing," IEEE Computer,
vol. 40, pp. 50-57, 2007.

[5] I. Alston and B. Madahar, "From C to netlists:
hardware engineering for software engineers?,"
IEE Electronics & Communication
Engineering Journal, vol. 14, pp. 165-173,
2002.

[6] C. T. Johnston, D. G. Bailey, and P. Lyons, "A
Visual Environment for Real-Time Image
Processing in Hardware (VERTIPH),"
EURASIP Journal on Embedded Systems, p. 8,
2006: (Article ID 72962).

[7] D. G. Bailey, K. T. Gribbon, and C. T.
Johnston, "GATOS: A Windowing Operating
System for FPGAs," in Proc. of the Third IEEE
International Workshop on Electronic Design,
Test, and Applications (DELTA 2006), Kuala
Lumpur, Malaysia, pp. 405-409, 2006.

[8] K. T. Gribbon, D. G. Bailey, and C. T.
Johnston, "Using Design Patterns for Image
Processing Algorithm Development on
FPGAs," in Proc. of the Third IEEE
International Workshop on Electronic Design,
Test, and Applications (DELTA 2006), Kuala
Lumpur, Malaysia, pp. 47-53, 2006.

[9] B. G. Batchelor and P. F. Whelan, "Machine
Vision Systems: Proverbs, Principles,
Prejudices and Priorities," in Machine Vision
Applications, Architectures and Systems III,
Boston, MA, pp. 374-385, 1994.

[10] D. G. Bailey, "Machine Vision: a Multi-
disciplinary Systems Engineering Problem," in
Hybrid Image and Signal Processing Orlando,
Florida: SPIE 939, 1988, pp. 148-155.

[11] J. L. Tripp, M. B. Gokhale, and K. D. Peterson,
"Trident: From High-Level Language to
Hardware Circuitry," Computer, vol. 40, pp.
28-37, 2007.

[12] R. C. Vogt, "Formalized Approaches to Image
Algorithm Development Using Mathematical
Morphology," in Proceedings of the Vision '86,
1986, pp. 5/17-5/37.

[13] S. Y. C. Li, G. C. K. Cheuk, K. H. Lee, and P.
H. W. Leong, "FPGA-based SIMD processor,"
in 11th Annual IEEE Symp. on Field-
Programmable Custom Computing Machines
(FCCM 2003), pp. 267-268, 2003.

[14] C. T. Johnston, D. G. Bailey, and K. T.
Gribbon, "Optimisation of a colour
segmentation and tracking for real-time FPGA
implementation," in Image and Vision
Computing New Zealand, Dunedin, New
Zealand, pp. 422-427, 2005.

222

