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Abstract 
Field programmable gate arrays (FPGAs) offer many performance benefits for executing image processing 
applications. Developing the algorithms to solve image processing problems is one aspect of using FPGAs; these 
algorithms must then be mapped to the FPGA. Mapping an algorithm requires building and utilising FPGA-
specific hardware (such as fast multipliers and block RAM) on an open architecture platform. This is 
fundamentally different to the design of software for the fixed architectures of conventional processors. 
Although software techniques may help define the image processing algorithm and facilitate its programming, 
they will provide little guidance on how to manage hardware specific issues such as concurrency and pipelining. 
As part of our aim to define new techniques that address these issues in an image processing context we present 
the complete design cycle and use it to elucidate some of the important considerations in the progression from 
problem specification to an FPGA-based implementation. 
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1 Introduction 
Semiconductor manufacturers are no longer relying 
upon increasing clock speeds to increase processor 
performance. Heat dissipation and power 
consumption become increasingly problematic at high 
clock speeds (above 3 GHz) calling for other 
techniques to be considered [1]. One option is to 
leverage concurrency by building chips incorporating 
multiple processors. This solution is being widely 
adopted in the market with multi-core processors now 
standard on new computers and gaming consoles.  

Although consumers are just beginning to experience 
the benefits of concurrency, parallel architectures 
have played an important role in image processing 
(IP) since the 1960s [2]. Systems such as the INMOS 
transputer and data cube have been used to solve 
complex vision problems where conventional single-
processor architectures have not achieved the desired 
speed of processing. 

Today, FPGAs (field programmable gate arrays) are 
emerging as a useful parallel platform for executing 
demanding IP algorithms. FPGAs consist of a large 
array of parallel logic and a large number of I/O pins 
for data access, as shown in Figure 1. This general 
and unspecified structure can be easily exploited to 
implement both spatial and temporal parallelism. 
These are common in IP applications and thus 
significant computation advantages can be achieved. 

 

Figure 1: An FPGA consists of logic “islands” in a 
“sea” of routing, which may be exploited for massive 

parallelism. Figure taken from Trimberger [3]. 

Using FPGAs to accelerate IP algorithms presents 
several challenges. One simply relates to Amdahl’s 
law: a large proportion of the algorithm must lend 
itself to parallelisation to achieve substantial speedup 
[4]. Based on this Herbodt et al conclude that FPGA 
performance is “unusually sensitive to the 
implementation’s quality” (p. 50, [4]). Therefore it is 
important to develop an appropriate algorithm to 
exploit available parallelism.  

Unfortunately, this is not as simple as parallelizing the 
code of a software algorithm as one would when 
porting single-processor applications to multi-core or 
traditional parallel computing systems. One reason is 
that current hardware languages and compilers are 
still maturing [5]. The problem is made more difficult 
due to an FPGA’s general structure which is not 
limited to two or four fixed processors such as on 
current dual or quad-core chips. Instead they have the 
potential to be massively parallel, with the number of 
processors limited only by the density of the logic. 
For a given application one could build a large 
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number of simple parallel processors in a 
configuration such as a systolic array, a full hardware 
solution, a soft-core processor or any combination of 
the above. As an FPGA’s structure is not fixed, one 
must develop both the algorithm and the architecture 
on which it is implemented. This complicates design 
because it must performed at the high-level 
(algorithmic) and low-level (architecture selection, 
pipelining, memory management) simultaneously. 

Therefore, traditional software engineering techniques 
cannot be relied upon exclusively. To address these 
issues our research group has been investigating 
techniques that lower developmental effort when 
implementing IP algorithms on FPGAs. To date our 
research efforts have focused on VERTIPH, a visual 
programming language to help designers 
conceptualise and implement IP algorithms on FPGAs 
[6], GATOS, a windowed operating system to aid in 
the debugging of IP algorithms [7] and an extension 
of design pattern methodology to capture generalized 
solutions to FPGA design problems [8]. 

As part of identifying potential development issues 
we have found it useful to consider the development 
process holistically. In this paper we present the 
complete design cycle which we use to explore 
several important development issues. Section 2 
considers some of the challenges stemming from the 
differences between software and FPGA design. 
Section 3 presents the complete design cycle for an 
FPGA-based system. Sections 4, 5 and 6 examine 
some of the important issues in each stage of the 
cycle. Section 7 addresses design flow. Summary and 
conclusions follow in section 8. 

2 Hardware Challenges 
Image processing is often viewed as a software 
engineering problem [9]. Although important in the 
development and implementation of algorithms, 
software design is often given prominence over other 
aspects of the system. Applied image processing is 
really a systems engineering problem because there 
are other important aspects to consider such as 
lighting, optics and integration with supporting 
hardware and machinery [10]. Design with FPGAs 
fits well into a systems engineering context because it 
is performed at several different levels. These include 
high-level algorithmic design down to bit-level 
operation design. 

Although the flexibility is available to work at the bit-
level, designers do not want to spend all their time 
there. Schematic entry and HDLs are often too low-
level as design tools because they do not capture the 
algorithmic nature of image processing functions 
adequately. Design at this level is complex, tedious 
and error prone [11]. An alternative that aids 
programmer productivity and more closely matches 
algorithmic design are high-level languages that infer 
circuitry using a hardware compiler. In this context 

FPGA configurations may resemble traditional high-
level languages like C, but specify hardware not 
software [4]. One advantage with this approach is that 
traditional software techniques can be co-opted to 
help write code. The danger is the temptation to port 
software algorithms to hardware because of the 
similarities between the languages. These similarities 
are often superficial in the sense that the hardware 
configuration has merely undergone a representational 
change. This leads to the implementation being 
‘constrained’ by the algorithm because the approach 
assumes that good software algorithms make good 
hardware algorithms. This is often untrue for the 
following reasons: 

• Optimal processing modes differ on an FPGA 
[4]. Random-access and pointer-based operations 
are efficient in software. A typical processing 
scenario involves grabbing a frame and moving it 
to main memory. The processor can then 
sequentially process pixels, affording random 
access to the image. On an FPGA this can be 
highly inefficient and costly.  

• Clock speeds are typically an order of magnitude 
slower than processors due to delay overheads 
through the general routing matrix. Therefore 
configurations must exploit parallelism rather 
than relying solely upon a high rate of processing. 

• Sequential processing of software code avoids 
contention for system resources. An FPGA’s 
potential for massive parallelism frequently 
complicates arbitration and creates contention for 
memory and shared processors. 

• Lack of an operating system complicates 
management of ‘thread’ scheduling, memory, and 
system devices, which must be managed 
manually. 

Based on these reasons, a more suitable algorithm 
may exist that can better exploit the available 
parallelism of the selected architecture. However, 
modifying an algorithm and designing the 
computational and memory architecture requires extra 
development effort on the part of the system designer. 
Given these challenges we now present the complete 
design cycle which will allow deeper exploration of 
some of these issues.  

3 Design Cycle 
We believe the complete development of an image 
processing application for an FPGA-based system 
involves four stages: problem specification, algorithm 
development, architecture selection and 
implementation. Descriptions and logical relationships 
between the stages are shown in Figure 2. 
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Problem specification

Algorithm

Architecture

Implementation

Defines problem, provides
context and outlines the set of
functional and engineering
constraints that need to be met
for a proposed solution to be
successful.

The high-level sequence of
operations that transforms the
input image(s) to the desired
output, fulfilling the image
processing requirements given
in the problem specification.

The conceptual design and
operational structure of the
system including memory
a r c h i t e c t u r e ,  p r o c e s s o r
architecture, bus widths and
hardware interfaces.

The implemented software and/
o r  h a rd w a r e  s y s t em  t h a t
embodies the algorithm and
supports its execution.

 

Figure 2: Stages in the design cycle. 

As the problem specification stage is common to 
software engineering design (and indeed any 
engineering design) we will focus our attention upon 
the following three stages of Figure 2 and 
corresponding FPGA specific issues. 

4 Algorithm level 
The development of an algorithm can be regarded as a 
problem solving task, where the aim is to find a 
sequence of mathematical (image processing) 
operations that progressively transform the image into 
the desired result, satisfying the functional 
requirements outlined in the problem specification. 
Several approaches can be applied to development 
which have remained largely unchanged since the 
1980’s [12]. 

4.1 Selecting Algorithms 

A simple mapping of a software implementation into 
hardware often falls short of the potential benefits 
offered by an FPGA solution as they do not tend to 
leverage concurrency. These sequential algorithms 
must be redesigned. 

For example, the classic connected components 
algorithm requires two raster-scan passes through the 
image. On the first pass, a label is assigned to each 
pixel based upon the connection between pixels in a 
local neighbourhood. Multi-branch (“U” shaped) 
objects have multiple labels applied during the scan 
and must be relabelled for consistency in the second 
pass. The classic algorithm assumes that memory is 
available to perform image buffering of the 
intermediate labelled image between the first and 
second pass.  

On an FPGA, on-chip memory resources are limited. 
Implementing the classic algorithm on an FPGA 
would require off-chip buffering which adds to the 
system cost. If we can develop and use a one-pass 
algorithm we could process images streamed directly 

from a camera. Given an appropriate stream 
processing architecture (to convert spatial distribution 
into a temporal stream) it may then be possible to 
eliminate image buffering altogether. 

To achieve this it is necessary to perform the merging 
and relabelling operations on the fly and in parallel. 
As we do not wish to retain image data, the features 
of each connected component must also be 
accumulated in parallel as the image is scanned. This 
removes the need for producing a labelled image and 
saves having to perform the second, relabelling pass. 

5 Architecture level 
Figure 2 shares much in common with the traditional 
software engineering lifecycle. The problem is 
defined, algorithms are developed and then 
implemented. However, software design assumes an 
underlying hardware architecture. With an FPGA we 
should seek to tailor the architecture for the 
application. This is the purpose of the architecture 
stage in Figure 2.  

In the connected component labelling application the 
preprocessing operations (typically local filters and 
point operations), necessary to segment objects from 
the background, are ideally suited to stream-based 
processing without image buffering. By utilising a 
stream processing architecture (which includes an 
appropriate memory architecture for the local filters) 
coupled with the one pass algorithm mentioned 
above, the requirement of image buffering could be 
removed altogether. An FPGA-based system such as 
an embedded smart camera could then process a 
progressively scanned image directly without any off-
chip buffering. 

Although most preprocessing operations are amenable 
to stream processing and can be implemented 
efficiently on an FPGA, some operations can not. For 
example, performing recognition tasks on the labelled 
image using a neural network may not translate well 
into an FPGA implementation.  

In general, higher-level image processing tasks can be 
harder to implement in custom hardware and tend to 
underutilise the hardware because they may not be 
run as often (e.g. recognition tasks run once per frame 
as opposed to preprocessing operations which need to 
be run for each pixel in an image scan). This can leave 
hardware idle for long periods of time which is often 
an ineffective use of the limited logic resources. An 
alternative is to implement some of these tasks in 
software by synergistically combining FPGAs and 
serial processors in a single system. This is an 
example of reconfigurable computing, which is 
becoming an increasingly important paradigm in high 
performance computing [11].  
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5.1 System Configuration 

The degree to which an FPGA is yoked to a processor 
is termed coupling. Two useful configurations are 
hosted and standalone. In a hosted configuration, the 
FPGA is utilised as a co-processor to a conventional 
processor. As a co-processor, the FPGA’s role is to 
complement the host computer by accelerating the 
portion of the algorithm that takes most of the 
execution time. 

These tasks are likely to be low-level (pixel-based) 
image processing operations, which an FPGA is more 
suited to performing. The host computer is usually 
responsible for “front end” tasks such as image 
capture, display and user interaction. To facilitate co-
operation, shared memory is required to transfer the 
raw and processed image data between the two 
devices.  

In a standalone configuration, the host computer is 
dispensed with, and all tasks are performed directly 
on the FPGA. 

Hosted and standalone configurations represent two 
possible options on a wide coupling spectrum. At one 
end are full hardware solutions, at the other full 
software solutions; in between are several options at a 
range of granularities. For example, implementations 
needn’t be executed on off-the-shelf processors. A 
simple controller like a finite state machine can be 
built very easily on the FPGA fabric. These may be 
useful for performing intermediate-level tasks with 
low processing requirements. If more complicated 
processing is required a full-blown processor may be 
required Building a soft-core processor provides 
several advantages. Instruction sets can be customised 
for efficiency and wiring delays are minimised. High 
development costs can be offset against software 
programmability; the same FPGA configuration can 
be used for several applications and a custom parallel 
computer can be built very quickly [13].  

5.2 Memory Architecture 

Memory configuration is another important 
architectural issue. Although there are several 
different memory resources in serial processor 
systems (processor cache, RAM etc.), when writing 
software the programmer typically has access to two 
types of memory: registers and external memory. In 
contrast a designer has access to a range of different 
memory resources at differing granularities available 
for FPGAs. An FPGA may have access to: 

• Individual registers within logic blocks 

• Logic blocks configured as look up tables  

• Small blocks of dedicated contiguous 
memory 

• Off-chip memory 

These resources should be exploited appropriately. 
For example, registers can be used to store an array or 
buffer intermediate values in a pipeline. On the other 
hand, the small blocks of dedicated memory (often 
referred to as block RAM) are ideally suited to row 
buffering which is necessary for local filtering. Block 
RAM is usually sufficient to buffer several rows of an 
image while off-chip memory is often necessary for 
applications that require frame buffering, such as 
image warping and geometric transforms. 

6 Implementation level 
After thinking through the architecture we must think 
about how to specify the operations efficiently in the 
presence of timing, resource and bandwidth 
constraints. Testing of the implementation for 
debugging purposes is also necessary but is harder to 
accomplish on an FPGA. 

Good design can be accomplished by using 
techniques such as pipelining (fine and coarse grain), 
utilising look up tables, CORDIC functions, and 
making function approximations. It is also useful to 
draw a data flow diagram early on to identify parallel 
branches between and within operations in the 
algorithm. We have been capturing and formally 
documenting such techniques using hardware design 
patterns which we believe are an appropriate means 
for recording and transferring the required knowledge 
needed to implement these techniques [8]. 

6.1 Pipelining 

Fine-grain pipelining is an important technique to 
exploit the temporal parallelism inherent in stream 
data, which in an image processing context, is 
commonly generated by a video source. 

Simply performing the required operations in the 
algorithm on each pixel in sequence often leads to 
long combinatorial delays which can easily exceed the 
input rate of the stream. A pipeline on the other hand 
accepts an input pixel value from the stream and 
outputs a processed pixel value each clock cycle with 
several clock cycles of latency, equal to the number of 
pipeline stages, between the input and output. At any 
instant, stages of the pipeline will contain pixels at 
successive stages of processing. This allows several 
pipeline stages each for the evaluation of complex 
operations.  

A video stream may contain a mixture of pixel and 
control data in the form of tokens to indicate the start 
of a new frame or line. Therefore mechanisms must 
be available to prime, flush and stall the pipeline. This 
complicates pipeline management. Priming for image 
processing operations is often difficult and error prone 
because of the need to start processing before the first 
item of valid data is available. Flushing is also 
difficult as the pipeline must continue to run until all 
valid data has finished processing. 
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6.2 Debugging 
Once we have developed our FPGA implementation 
we are likely to want to test it for debugging purposes. 
Conventional hardware verification paradigms are 
impractical for this purpose. The problem stems from 
the large volume of data contained within an image. 
With complex algorithms, it is extremely difficult to 
design test vectors that exercise all of the 
functionality of the system, especially when there 
may be complex interactions. In image processing, the 
problem is even more difficult, because the algorithm 
may be working perfectly as designed, but it may not 
be appropriate or adequate for the task to which it is 
applied. Validation using test vectors will only verify 
that the algorithm is implemented correctly, and not 
whether the correct algorithm is actually being used. 
When processing video, this is exacerbated by the 
dynamic nature of the data being processed. 
 
Simulation of the configuration prior to in-circuit 
testing is desirable. However, on the development 
platform (which is most likely a general-purpose 
computer) simulation is of limited value in judging 
final performance because a parallel architecture must 
be simulated on a serial architecture, which is very 
slow. The performance of a real-time application 
processing a continuous, noisy, video stream is 
difficult to evaluate without actually having the final 
system. 
 
In-circuit debugging is significantly more complex 
and troublesome on an FPGA particularly in 
standalone configuration which lacks an operating 
system to manage basic tasks such as user interaction 
and peripheral interfacing. For in-circuit testing 
additional debug circuitry must be built in tandem to 
perform these tasks even if they are not required in 
the final system. For example, circuitry to drive a 
display was needed during development of an object 
tracking application to perform lens calibration, 
tuning and to verify correctness despite the output 
being a set of integer coordinates that are passed on to 
another subsystem [14]. Building debug circuitry also 
reduces the amount of logic available to the 
application. 
 
To address some of these issues we have proposed the 
Gate Array Terminal Operating System (GATOS) 
which provides a set of high-level IP blocks to 
implement the graphical user interface of an 
interactive windowing operating system [7]. 

7 Design Flow  
The logical progression through the development 
stages is shown in Figure 2. For example, algorithm 
development precedes architecture selection because 
that way the architecture is tailored specifically to the 
algorithm.  

In practice however, this flow may be interrupted. We 
have alluded to the iterative nature of the development 
process throughout the paper. Iteration is usually 
required to achieve acceptable performance and 
functionality. It is also required due to the 
interdependency between the stages. Changes made in 
one stage may inadvertently affect another. For 
example, significant modifications may be made to an 
existing algorithm to make it more suitable for 
hardware implementation, such as in the connected 
component labelling application. When these changes 
are made the algorithm should be re-tested (back in 
the image processing development environment). 

In addition to the iterative nature of the practical flow, 
development stages can be entered out of order. 
Several practical permutations of the design process 
exist. For example, consider Figure 3 which reflects 
the practical flow that we took in the development of 
the object tracking algorithm mentioned above. 

 

Figure 3: Practical permutation of development 
process. 

In [14] the architecture was implicitly selected 
because we wanted to use a specific FPGA 
development board and thus the system architecture 
was predefined. The algorithm was then shaped to fit 
the architecture. 

To achieve this, the flow alternated between the 
algorithm and implementation stages, as Figure 3 
shows. Each operation in the processing chain was 
developed, implemented and tested in circuit on the 
FPGA. The algorithm and implementation were 
effectively developed in lock-step with one another. 
This method can be thought of as an attempt to 
develop the algorithm directly on an FPGA. At the 
completion of the development process, it was found 
that a filter operation needed to be inserted into the 
algorithm to account for troublesome noise [14], 
requiring further iteration.  

8 Summary 
FPGAs offer many performance benefits for 
implementing image processing algorithms. Their 
general structure can be configured to exploit both 
spatial and temporal parallelism inherent in images. 
However, obtaining these benefits can come at 
significant development cost because an algorithm 
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and architecture must be simultaneously developed 
for an application. 

This aspect, which is peculiar to FPGA-based 
development, needs to be reflected in the design 
cycle. Appropriate hardware design should be 
performed to select the computational and memory 
architecture in addition to defining the problem 
specification, developing an algorithm, and 
implementing the system (which are also common 
stages of software design).  

Other development issues encountered while 
following the design cycle include an operating clock 
frequency one tenth that of a conventional processor, 
lack of an operating system to oversee common tasks, 
inefficiency of random access and pointer-based 
operations and a complex debugging process. 

To address these issues we are actively working in 
several different areas: visual programming languages 
for hardware [6], windowed operating system for 
debugging, calibration and tuning [7] and design 
patterns for capturing and transferring useful 
implementation techniques [8]. 
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