

Backgrounds in the ESS High Energy BeamTransport

Roger Barlow & Adina Toader

Huddersfield University

SLHiPP3

with input from Bob Cywinski and Cristian Bungau

April 17th 2013

Sources:

- Source backsplash
- Beam losses
- The Collimator

Possible effects

- Components (magnets etc) become active
- Hall becomes unsafe even with beam off
- Air and water become active
- Energy deposition damages materials
- High neutron background for instruments

Studies

Using MCNPX with GEANT4 as a check:

Current study: Energy deposition ⁶⁴Cu (12 h) from ⁶³Cu(n,γ) ⁶⁵Cu (5 min) from ⁶⁵Cu(n,γ) ⁶⁰Co (5.1 y) from ⁶³Cu(n,α)

Future isotopes to study:

From Zinc (in solder and alloys) 65 Zn(244 days) from 64 Zn(n, γ)

From Air ⁴¹ Ar(109 min) from ⁴⁰Ar(n,γ) ¹¹C, ¹³N, ¹⁵O

```
From Copper

<sup>57</sup>Co(272 days)

<sup>58</sup>Co(71 days)

<sup>54</sup>Mn(312 days)

<sup>51</sup>Cr(28 days)

<sup>59</sup> Fe (45 days)
```

From Iron, Tungsten, etc

Geometry

Standard description + beampipe +magnets +collimator

February 2012 baseline model of monolith Collimator is 1 m long, external radius 1m internal radius 50 cm, narrowing to slit Copper with 2cm Tungsten lining

Magnets modelled as cylinders, 50% Fe, 50% Cu

Results-Source 1: the target

Source 1: Spallation source, coming back down the beam pipe. Normalise to 2 mA 30 hours to simulate 1,000,000 particles Magnet values low: large statistical errors Other magnets (further upstream) even lower Decay of Co during the year (5 year half life) not considered

	Collimator	Magnet 1
Energy (MeV/g)/particle	1.1 10-8	2 10-11
For 2 mA, Gy/s	0.56	0.001
Per 225 day year, kGy	10800	20
⁶⁴ Cu/particle	0.0013	1.9 10 -5
66Cu/particle	0.00032	4.4 10-6
⁶⁰ Co/particle	7.6 10-6	6.8 10-8
⁶⁰ Co/ year (nuclei)	18.2 10 ¹⁷	16 10 ¹⁵
⁶⁰ Co/ year	7.7 GBq	68 MBq

μGy/s

Results- Source 2: beam losses

Source 2: Losses in the beam pipe. Grazing incidence, 2.5 GeV, uniform from 50m to 20m upstream. Normalise to 1W/m 37 minutes for 100,000 particles Errors 1-2%. Credible.

								Collin	nator	Magnet 1		
				⁶⁴ Cu/pa	article	9		0.28		0.43	3	
				66Cu/particle				0.073		0.11		
				⁶⁰ Co/particle				0.0028		0.0029		
				⁶⁰ Co/year (nuclei)				4.1 10 ¹⁵		4.3 10 ¹⁵		
				⁶⁰ Co/year (Bq)				17.1 MBq		17.6 MBq		
Coll		M2	М3	M4	M5	M6		M8	M9	M10		M12
67	27	27	22	21	27	24	28	24	26	24	27	57

Results-Source 3: the Collimator

Source 3: Losses on the collimator. 500,000 protons: 136 strike collimator. Symmetry \rightarrow 544 xy values for simulation Normalise to 2 mA x 136/500000

102 min to simulate 100,000 particles Other magnets doses even lower

Collimator	Magnet 1
2.00	4.0 10-5
2550	0.77
4.49	0.0012
1.16	0.00030
0.045	6.1 10-6
4.7 1018	6.5 1014
19.8 GBq	2.7 MBq (~90 μCi)
	Collimator 2.00 2550 4.49 1.16 0.045 4.7 10 ¹⁸

Magnets

Change from Cu/Fe 50:50 cylinders to more realistic models

Copper activation much less, by ~ factor 10:

Previous model was too large and had too much copper

Effect of changing the inner face of the collimator from Tungsten to Copper

Originally 0.045 ⁶⁰Co produced in collimator for each proton hitting the collimator.

Replacing Tungsten by Copper changes this to 0.040

Despite extra volume of Copper in exposed position which would (on its own) cause a rise to 0.061 !

Future plans

More detailed geometry (with shielding) and more isotopes.

Air and water contamination

Beam losses in spikes at magnets rather than uniformly

Time dependence (Bafeman equations)

Activity during shutdown – gamma ray fluxes from active nuclei, using same geometry

Improve speed and credibility of simulation

Further geometries. Optimisation of shielding.

Estimate neutron backgrounds for instruments