

SRF Activities at Argonne National Laboratory

Alireza Nassiri Advanced Photon Source

3rd Open Collaboration Meeting on Superconducting Linacs for High Power Proton Beam (SLHiPP-3) *Louvain-la-Neuve,* Belgium 17-18 April 2013

Outline

- Low-β cavities
- Deflecting cavities
- Summary

I. Argonne Facilities Highest Performing Low-β Cavities in Operation Worldwide ATLAS Energy Upgrade: Commissioned June 2009 14.5 MV in 5 meters using 7 SC Quarter-wave Cavities

Ali Nassiri

SRF Activities at Argonne National Laboratory

SLHiPP-3 17-18 April 2013

Argonne Facilities: Argonne/Fermilab Superconducting Cavity Processing Facility at ANL

Argonne Facilities: Horizontal electropolishing systems at ANL/FNAL cavity facility

- 8 Argonne 72 MHz QWRs (complete)
- 8 Fermilab 162.5 MHz HWRs (starting fall 2013)
- Fermilab 650 MHz e-cells (2 complete)

Recent Results: Cold test results for 5 of 8 new 72 MHz β =0.077 QWR's $E_{PEAK}(MV/m)$

6

Argonne ATLAS Intensity Upgrade To be Commissioned Summer 2013

Planned 17.5 MV in 5 meters using 7 SC Quarter-wave Cavities

Cavity Fabrication: February 2013

Ali Nassiri

SRF Activities at Argonne National Laboratory

SLHiPP-3 17-18 April 2013

II: Work for others: 4 to 15 kW Variable Power Couplers for ATLAS, FRIB, Project X, and **SARAF**

(Israel)/Project X

SRF Activities at Argonne National Laboratory

SPX SRF Deflecting Cavities

- Elliptical squashed-cell cavity
 - Large grain Nb ingot slicing
 - RRR >300
 - CNC machining
 - Chemical etching/polishing
 - E-beam welding
 - Chemical polishing
 - Hydrogen bake out @600 °C 10 hours
 - Light chemical polishing (BCP)
 - HRP/clean room assembly
 - Low temperature bake
 - Vertical testing
 - Helium vessel dressing
 - Light chemical polishing *BCP)
 - Vertical testing
 - Horizontal testing

Ali Nassiri

SRF Activities at Argonne National Laboratory

Cavity Parameter	Value	Unit
Operating frequency	2815.486	MHz
Operating Deflecting Voltage	0.5	MV
Vertical Test Acceptance B Field	≥120	mT
Peak Surface B field	106	mT
Peak Surface E field	41	MV/m
R/Q including TTF	37.1	Ω
Niobium wall thickness	3.5	mm
Geometric Factor	227.8	Ω
Operating Q ₀	≥10 ⁹	
Dynamic heat load	7	W
Magnetic Shielding	≤ 20	milligauss
Q _{ext} of Power Coupler	10 ⁶	
RF source available	10	kW
Tuner Parameter	Value	Unit
Range	±200	kHz
Resolution	≤40	Hz
Fast detuning	60	kHz
Fast detuning response time	≤1	ms

SPX SRF Deflecting Cavities Mark-II Cavity Vertical Tests at ANL

Cavity	Q ₀	Bpk [mT]	Seal
CCA2	1.2x10 ⁹	120±30	Indium
CCA3-1	0.9x10 ⁹	68±21	Al/Mg without RF shield
CCA3-2	1.24x10 ⁹	136±35	Indium
CCA3-3	0.3x10 ⁹	52±16	Al/Mg with RF shield

404

3.64

204.78

2018

A 204.82

* - The tuning sensitivity with a He vessel is expected to decrease by 26% ** - The stiffness with a He vessel is expected to increase by 12%

HOM

Tuner Specification	Value	
Operating frequency	2815.486	MHz
Range	±200	kHz
Resolution	≤40	Hz
Fast detuning	3	KHz
Fast detuning response time	≤1	ms

SPX Tuner Parameters

Cavity Related Parameters		
Tuning Sensitivity	9000	KHz/mm
Stiffness	170,000	lbs/in
Deflection for 200KHz shift	22	μm
Force of 200KHz shift	149	lbs
Tuner Related Parameters		
Stepper Motor Resolution	800	Steps/rev
Harmonic Drive Ratio	100	
Ball Screw Pitch	2	mm/rev
Stepper Freq. Resolution		
-Full Step Frequency shift	31.6	Hz/incremen
-Half Step Frequency Shift	15.8	Hz/incremen
-Quarter Step Freqeuncy Shift	7.9	Hz/incremen
Piezo Range		
-Drive Axis	60	μm
-Cavity Axis	75.8	KHz
Piezo Resolution		
-Drive Axis	0.13	nm
-Cavity Axis	0.16	Hz

Ali Nassiri

SRF Activities at Argonne National Laboratory

204.84 204.86 204.88 204.9 204.92 204.94

Modeling Validated

Force vs Length

 $\gamma = 4466.6x - 914811$ $R^2 = 0.9583$

Length (mm)

SLHiPP-3 17-18 April 2013

SPX Cryomodule

- End load
- JLAB space frame design
- Cryogenic heat exchanger inside an end cap
- Tuner motor and piezo outside of cryostat
- LOM damper outside of cryostat
- Rectangular waveguide FPC

Ali Nassiri

SPPX Cryomodule Concept - Alignment

- Insert cold mass into space frame (support structure)
- Transfer alignment to space frame (fiducial features on space frame)
- Complete cryomodule assembly
- Transfer alignment to vacuum shell (fiducial features outside shell)
- Remote alignment concept
 - (4) Nitronic rods support the cavity
 - External mechanical adjustment
 - Allow for 2 mm movement of each rod

Summary

- Low- β Cavities
 - Developing a new half-wave resonator and cryomodule for Project X
 - Designed and built a variable (4 kW 15kW) power coupler for ATLAS,
 FRIB , SARAF, and PXIE 162.5 MHz SC HWR
 - Argonne ATLAS upgrade to be commissioned in summer 2013
 - A high throughput ANL/Fermilab facility at ANL for SC RF cavities processing
- SPX deflecting cavities
 - Cavity performance has been demonstrated in vertical in vertical test
 - Cryomodule design concept is well underway
 - Tuner performance verified
 - Range measured in ±300 kHz (exceeds ±200 kHz spec)
 - No hysteresis in 25 kHz short range
 - Good linearity (0.04Hz/µstep with 25 Hz resolution step
 - Microphonics characterized and active compensation looks possible

Acknowledgment

- Mike Kelly
- Genfa Wu
- John Mammosser (JLab)
- Joe Matalevich (JLab)
- Karen Wilson (JLab)

