
Simulation framework for the DG
ESS Detector Group Jamboree, DTU Risø, 2016-09-05

Thomas Kittelmann, ESS

Note: framework support & features not just due to me.
In particular Kelly & Xiao Xiao contribute heavily.

2

What is our framework?What is our framework?

Technically it is:
● A code repository (dgcode)
● with a build system (dgbuild)
● with conventions of how to add code
● with possibilities to provide code to each other
● with associated issue tracker, wiki, etc.
● most content concerns Geant4 simulations

It is also:
● A way to collaborate on code projects
● Sharing expertise and tools as we go along
● A way to keep code “alive” and accessible
● A way to increase the “bus-factor” of projects

McStas, Vitess, MCNP are
applications, Geant4 is a toolkit

Framework reference:
Kittelmann, et al. CHEP 2013.
doi:10.1088/1742-6596/513/5/052022

3

Outline of this presentationOutline of this presentation

● Will skip most details of how to install, how to use mercurial, how to
put code where in dgcode, how to use dgbuild

– Details are on the wiki

– Sara will show some of this in her presentation

● Instead, will briefly showcase:

– How simulation projects are put together

– Available utilities for dealing with different aspects of a sim project

– Some recent developments and additions

● Won’t go much into specific projects (many dedicated talks)
● Some new features have dedicated talks: MCPL, NCrystal

● Due to time constraints, some slides are mainly here for reference
and I will skip over them very fast!

Slides marked with this icon contain
reference material – we won’t go
into everything today

4

The basicsThe basics
Getting started, geometry, sim-script, visualisationGetting started, geometry, sim-script, visualisation

5

Ready to rumble?Ready to rumble?
Step 1.

Install base dependencies following
platform-specific instructions on
HowToInstallComputingPrereqs

Step 2.
Edit mercurial settings in the file
~/.hgrc (as per wiki instructions).
$> hg clone dg_dgcode

Step 3.
$> cd dg_dgcode
$> . bootstrap.sh
$> dgbuild

Relevant wiki pages:
Mercurial
CodingFramework
HowToInstallComputingPrereqs

Only Step 3. needs
repeating during

daily work

Optional step 4.
Install other dependencies as
desired, perhaps using dgcode
utilities, such as:

ess_devtools_installgeant4

6

In reality, just 2-3 files needs
to be modified to get started
with a new project.

Create skeleton code for new sim projectsCreate skeleton code for new sim projects
(because people anyway starts by copy+edit of existing examples)(because people anyway starts by copy+edit of existing examples)

https://ess-ics.atlassian.net/wiki/display/DG/How+to+start+a+new+simulation+projecthttps://ess-ics.atlassian.net/wiki/display/DG/How+to+start+a+new+simulation+project

--> ess_tricorder_sim

https://ess-ics.atlassian.net/wiki/display/DG/How+to+start+a+new+simulation+project

7

The simulation script (“sim-script”)The simulation script (“sim-script”)
Tricorder/scripts/sim → can run as ess_tricorder_simTricorder/scripts/sim → can run as ess_tricorder_sim
geometry module + generator module = simulation applicationgeometry module + generator module = simulation application

8

A shape
(box, tube, ...)

A shape
(box, tube, ...)

A materialA material

A “logical volume”A “logical volume”

Physical volumePhysical volume

+
+

Info about
placement*
Info about

placement*

*Info about placement:
● Which is the mother logical volume
● A transform (where is is it located in the mother)
● A copy number (to be able to tell different PV's apart)

Optimised for reuse:
Shapes and materials can go in several logvols

A logvol can be placed again and again

Optimised for reuse:
Shapes and materials can go in several logvols

A logvol can be placed again and again
But can get a bit tedious to be so efficient with

memory usage when simulating something simple

But can get a bit tedious to be so efficient with
memory usage when simulating something simple

We provide optional 1-liner: “put this shape here and fill it with this material”:
place(new G4Orb("Sample",sample_radius), mat_sample,0,0,sample_posz,lvWorld);
We provide optional 1-liner: “put this shape here and fill it with this material”:

place(new G4Orb("Sample",sample_radius), mat_sample,0,0,sample_posz,lvWorld);

We also provide an ever expanding material-database, optimised for neutron facilitiesWe also provide an ever expanding material-database, optimised for neutron facilities

And ways for you to modify parameters of geo and materials without recompilationAnd ways for you to modify parameters of geo and materials without recompilation

Fundamentals of geometry Fundamentals of geometry
description in Geant4description in Geant4

9

geometry_module.cc for TriCordergeometry_module.cc for TriCorder

GeoTricorder constructor
Declare configurable parameters
with default values

GeoTricorder::Construct
Query parameters, compose geometry,
return world physical volume

Change and query parameters runtime
From command-line or in python script

Can use standard Geant geometry code here,

but preferably take advantage of our material DB,

place(..) method and configurable parameters.

10

MaterialsMaterials
https://ess-ics.atlassian.net/wiki/display/DG/NamedMaterialshttps://ess-ics.atlassian.net/wiki/display/DG/NamedMaterials

Direct definition of materials in Geant4 is
Somewhat tedious and error-prone:

To avoid duplication of work (and bugs!), we want to avoid putting
such material code directly inside geometry modules!

Geant4 does provide a database

of several common materials based

on NIST data. However, it far from

completely covers our needs.

And we want materials to be free parameters, just as much as
other details of a geometry!

Thus, all materials we use can be
uniquely defined by a single string, which
is parsed and acted upon by our material DB:
● Allowing minimal yet highly
 functional code in geo modules
● Allowing for easy investigations and scans
 over material properties
● And allowing for cmd line utilities for
 materials

11

Example of material string definitionsExample of material string definitions
https://ess-ics.atlassian.net/wiki/display/DG/NamedMaterialshttps://ess-ics.atlassian.net/wiki/display/DG/NamedMaterials
● “G4_xxx” : Look up xxx in G4's NIST mat DB

● “NXSG4:nistmat=G4_Al:nxsfile=Al.nxs” : polycrystalline aluminium, with crystal unit cell info
loaded from Al.nxs (“ESS_Al” and “ESS_Cu” are shortcuts since we use them a lot)

● "ESS_B4C:b10_enrichment=0.98" : Enriched boron carbide (98% 10B)

● "MIX:comp1=CONCRETE:f1=0.99:comp2=Cu:f2=0.01" : quick and dirty mixture

● “ESS_POLYETHYLENE” : custom PE with magic names for TS physics

● "SHIELDING_paraffin_wax" : custom paraffin for shielding studies

● "IdealGas:formula=0.7*Ar+0.3*CO2" : 70/30 Ar/CO2 gas mixture

● "IdealGas:formula=He{3:1.0}:pressure_bar=3" : He3 gas at 3 bar

● "IdealGas:formula=0.9*B{10:0.98}F3+0.1*CO2{bymass}:pressure_bar=2:temp_kelvin=300" :

90/10 BF3/CO2 by-mass mixture with 10B level enriched to 98% , at 2 bar and 300K

All materials support parameters
for temperature and density. Other
parameters depend on the type
of material.

Use the ess_g4materials_namedmat command to see the resulting G4 material dumped,
and ess_g4xsectdump_query to extract x-sections and mean-free-path info in the material

Don't start adding material definition code to your geometry module if the above does
not fulfill your needs. Rather, get in contact and we will extend the database!

12

Visualisation of geometry and tracks
is invaluable as a development aid,
debugging tool, and quick view of results.

Visualisation of geometry and tracks
is invaluable as a development aid,
debugging tool, and quick view of results. Bonus points for a visualisation tool if:

● It can generate pretty pictures
● One can easily obtain the desired views
● One can interact with the displayed objects
 to extract information or change the display

Bonus points for a visualisation tool if:
● It can generate pretty pictures
● One can easily obtain the desired views
● One can interact with the displayed objects
 to extract information or change the display

Some people might like the default Geant4
visualisation and interactive command line...

If so, supply “-v” to your simulation script:

Some people might like the default Geant4
visualisation and interactive command line...

If so, supply “-v” to your simulation script:

Our framework also provides
another option...: “CoolNameHere”

To use it, supply “--viewer” to your sim script.

Our framework also provides
another option...: “CoolNameHere”

To use it, supply “--viewer” to your sim script.

...
(next slides)

VisualisationVisualisation
https://ess-ics.atlassian.net/wiki/display/DG/Visualisation+of+Geant4+geometry+and+datahttps://ess-ics.atlassian.net/wiki/display/DG/Visualisation+of+Geant4+geometry+and+data

i

https://ess-ics.atlassian.net/wiki/display/DG/Visualisation+of+Geant4+geometry+and+data

13

Requires OpenSceneGraph (OSG)
But no X11 or gui toolkits.
Requires OpenSceneGraph (OSG)
But no X11 or gui toolkits.

No GUI buttons, but can interact with mouse
And short cut keys (CTRL-H or F1 to see)
No GUI buttons, but can interact with mouse
And short cut keys (CTRL-H or F1 to see)

A bit rough around the edges in places, but has lots
of functionality for geometry debugging:
 - interactive open/close vols to get to daughters
 - or simply “zapping” of volumes
 - Dumps vol/mat info when clicked
 - Axes, measurement points, custom data sets

A bit rough around the edges in places, but has lots
of functionality for geometry debugging:
 - interactive open/close vols to get to daughters
 - or simply “zapping” of volumes
 - Dumps vol/mat info when clicked
 - Axes, measurement points, custom data sets

Easy navigation and display:
● Pan, rotate, zoom with mouse
● Change center to selected point on volume
● Shortcuts to change render style & bgd color
● Shortcut to toggle orthographic/perspective
● Anti-aliasing when hardware supports it

Easy navigation and display:
● Pan, rotate, zoom with mouse
● Change center to selected point on volume
● Shortcuts to change render style & bgd color
● Shortcut to toggle orthographic/perspective
● Anti-aliasing when hardware supports it ...

Displays simulated
tracks as well
 (see later slide)

Displays simulated
tracks as well
 (see later slide)

Our viewer (“CoolNameHere”)Our viewer (“CoolNameHere”)

14

GeneratorsGenerators
Every simulation needs a source of “primary” particlesEvery simulation needs a source of “primary” particles

15

Utility for playing around with generator modules directly (i.e. without a sim script):
ess_g4utils_querygenerator -g G4StdGenerators.ProfiledBeamGen -v -n2000 \

 spread_x_mm=500 spread_y_mm=300 spread_mode=FLATCIRCULAR

Picking a generator modulePicking a generator module
https://ess-ics.atlassian.net/wiki/display/DG/Particle+generators+for+Geant4https://ess-ics.atlassian.net/wiki/display/DG/Particle+generators+for+Geant4

For most projects, a pre-existing generator
module can simply be re-used (at least to start)

As for geometry modules, parameters can be

queried and modified at runtime

16

Generating from external sourcesGenerating from external sources

So far we have generators for MCNP and McStas,
but could easily add more if required:

● VITESS ?
● Based on distributions in histograms?
● ...

So far, most target station simulations are done in
MCNP and most instrument simulations in McStas
(excl. shielding studies of course).
So quite useful to be able to catch their output
and continue downstream simulations with Geant4.

Also plan to add specialised sources (like ESS
spectrums a'la what is in McStas) as we go along.

OBSOLETE METHOD

(better solution now exists for exchanging data with MCNP/McStas – see MCPL talk)

17

Want full flexibility but no hassle?Want full flexibility but no hassle?
A generator in python is for you! :-)A generator in python is for you! :-)

Just a handful of lines to add directly in your
simulation script for a quick test

Perhaps add a few tunable parameters
and a bit of initialisation

Might generate based on distributions
in histograms...

Recommended!

18

PhysicsPhysics
Selecting G4 physics lists, using our neutron-extensions Selecting G4 physics lists, using our neutron-extensions

19

Physics!!Physics!!

“Laws of physics” are implemented in Geant4 in terms of processes, and
each particle type has an associated list of processes:

In reality, a process is just a C++ class, so anyone can in principle add their own
physics modelling to Geant4 (and we are doing so, see following slides!)

Neutrons mainly have “discrete”
processes, which either take
place completely or not at all

20

Physics listsPhysics lists A consistent collection of particle types and their associated processes
Is a physics list. Creating (and validating!) one of these can be a bit
tricky, but luckily Geant4 provides a long list of reference lists. On top
of those, we provide some ourselves.

To see available physics lists, supply “--showphysics” to any sim script, or run
ess_g4physicslists_showall :

Note that I hid 102 lists in the output,
so it would fit on the slide.

Since all G4 lists come in flavours
depending on EM physics
(e.g. GQSP_BIC_HP_LIV)

OurOur
listslists

G4's ref listsG4's ref lists

Very important for neutrons < 20MeV to use “_HP” list!

Quick guide to picking a physics model here:

http://geant4.slac.stanford.edu/MIT2015/Physics1MIT.pdf

Very important for neutrons < 20MeV to use “_HP” list!

Quick guide to picking a physics model here:

http://geant4.slac.stanford.edu/MIT2015/Physics1MIT.pdf

● TS: Enable G4's own thermal
 scattering implementation
● ACE : XX's TS impl. Loading
 MCNP ACE files.
● FHP : XX's fast and precise
 “_HP” (faster shielding
 studies!)
● ESS_Empty : Nada!
+ NXSG4 for polycrystals
+ project lists (ShieldingCuts, Scint)

● TS: Enable G4's own thermal
 scattering implementation
● ACE : XX's TS impl. Loading
 MCNP ACE files.
● FHP : XX's fast and precise
 “_HP” (faster shielding
 studies!)
● ESS_Empty : Nada!
+ NXSG4 for polycrystals
+ project lists (ShieldingCuts, Scint)

O
u

r
c

u
rr

e
n

t
d

e
fa

u
lt

O
u

r
c

u
rr

e
n

t
d

e
fa

u
lt

http://geant4.slac.stanford.edu/MIT2015/Physics1MIT.pdf
http://geant4.slac.stanford.edu/MIT2015/Physics1MIT.pdf

21

Picking a physics list in our frameworkPicking a physics list in our framework

launcher.setPhysicsList(“ESS_QGSP_BIC_HP_TS”)

$> ess_tricorder_sim -lESS_QGSP_BIC_HP_TS

There's nothing too it, really!

Firstly, you can change the default In your simulation script:

secondly, you can override at the command line:

22

Very often, one wonders about x-sections and mean-free-paths:
● Either because one need the info for some reason
● Or because one wants to check if some physics of interest

is implemented in Geant4 in a reasonable way.

Investigating cross-sections (1/2)Investigating cross-sections (1/2)
https://ess-ics.atlassian.net/wiki/display/DG/Extract+and+investigate+cross-sections+from+Geant4https://ess-ics.atlassian.net/wiki/display/DG/Extract+and+investigate+cross-sections+from+Geant4

This info is not normally easy to extract in Geant4, but we provide a
special hook which can reliably extract the cross-sections at run-time

Option 1: Supply -x to your simulation script and get x-sect info dumped
for all combinations of materials and particle types encountered during
the course of event simulation:

Afterwards you can either plot the files with:

 “ess_xsectparse_plotfile <filename>”

or you can load the curves into python if you
have some special analysis in mind.

ess_tricorder_sim -x

23

Investigating cross-sections (2/2)Investigating cross-sections (2/2)
https://ess-ics.atlassian.net/wiki/display/DG/Extract+and+investigate+cross-sections+from+Geant4https://ess-ics.atlassian.net/wiki/display/DG/Extract+and+investigate+cross-sections+from+Geant4

Option 2: Use the ess_g4xsectdump_query script to directly extract
info you want, with no need for a sim-script.

x-sect vs Ekin mfp vs Ekin

mfp vs wavelengthx-sect vs wavelength

$> ess_g4xsectdump_query -pneutron -lQGSP_BIC_HP -mESS_Al [-w]

24

Thermal scattering physicsThermal scattering physics
Chemical bindings have very significant effects on interaction cross-sections
of neutrons at thermal energies, but Geant4 by default treats all materials
with a free gas approximation.

Example: Mean-free-path in polyethylene for 1.8Aa
neutrons change by a factor of ~2 when the chemical
bindings of the hydrogen atoms are included!

Requires custom physics lists and custom materials
in order to work, and only work for ~10 materials
In Geant4's own implementation → value in having
common material DB and physics lists.

Comparisons between the _TS, _ACE and MCNP models,
reveal discrete artifacts of implementation. Xiao Xiao plan
to solve this by developing new TS models (which would
also work for many more materials).

25

NXSG4: Polycrystalline/powder scatteringNXSG4: Polycrystalline/powder scattering

Our own, published extension, which enables poly-
crystalline scattering in Geant4.

– plugs dynamically into any physics list on
demand, so does not influence list choice

Sample is “ESS_AL” a.k.a.
“NXSG4:nistmat=G4_AL:nxsfile=Al.nxs”

This is how to define the
Crystal structure

26

Our own, published extension, which enables poly-
crystalline scattering in Geant4.

– plugs dynamically into any physics list on
demand, so does not influence list choice

Sample is “ESS_AL” a.k.a.
“NXSG4:nistmat=G4_AL:nxsfile=Al.nxs”

This is how to define the
Crystal structure

See Xiao Xiao’s talk today on the NCrystal project,

which extends this to single-crystal + adds proper

inelastic component. Ultimately, so we can simulate

monochromators, analysers, beam-filters, etc.

NXSG4: Polycrystalline/powder scatteringNXSG4: Polycrystalline/powder scattering

27

Just add two lines to your sim-script:

Gravity for cold beam-linesGravity for cold beam-lines
https://ess-ics.atlassian.net/wiki/display/DG/EnablingGravityInGeant4https://ess-ics.atlassian.net/wiki/display/DG/EnablingGravityInGeant4

Here 1000Å neutrons
in LoKI for clear visual
effect...

(defaults to Y-axis pointing
up if no direction specified)

28

Other ongoing work: step-limits & mirrorsOther ongoing work: step-limits & mirrors
DGSW-265 & DGSW-288DGSW-265 & DGSW-288

Limit step-size for certain particles in certain volumes:

Super-mirror physics
 (here in gravity field)

without and with step limits

29

Data extraction & Data extraction &
analysisanalysis

Event inspection, GRIFF, HeatMaps, custom hooks, Event inspection, GRIFF, HeatMaps, custom hooks,
pylab/matplotlibpylab/matplotlib

30Can also view tracks in GRIFF files (even with geometry!):
$> ess_g4osg_viewgriff --loadgeo myresults.griff

Visualising simulated tracksVisualising simulated tracks

Supply --dataviewer to the sim script,
using -n<NEVTS> to control statistics

… or --aimdataviewer if you are having trouble aiming
your generator...

The data display is a bit basic, and
has no interactive features yet
 – feedback appreciated as always!

31

Inspecting at command-lineInspecting at command-line
Less glamorous than 3D, but highly useful when short
steps are be hard to see in the 3D viewer

To activate, supply --verbose or -r to sim-script.
Specifying multiple times increases verbosity.

Example output from: ess_tricorder_sim -rr

ProTip: Use with ESS_Empty physics list to
debug your generator aim!

$> ess_tricorder_sim -lESS_Empty --verbose

32

Heat-mapsHeat-maps
https://ess-ics.atlassian.net/wiki/display/DG/G4HeatMaphttps://ess-ics.atlassian.net/wiki/display/DG/G4HeatMap

● Sum quantities in virtual 3D mesh
● Can handle large number of bins efficiently
● Our new ExpressionParser makes it simple to specify:

- Quantity to be summed
- For which steps to do the summing

● Interactive view of results with ess_mesh3d_browse
● All without touching a single line of code!

ess_myproj_sim --heatmap [edep of all steps]
ess_myproj_sim --heatmap=”step.steplength*step.ekin” [energy flux]
ess_myproj_sim --heatmap=”step.edep where trk.is_photon” [edep of photons]
ess_myproj_sim --heatmap=help [print detailed instructions]

test example: 3 showers Magnetic field in accelerator
Edep in tapered LoKI

33

Code-based access to resultsCode-based access to results

Normally analysis in Geant4 will be done by registering call-back functions,
which gets called for each step particles take through geometry:

void myAnalysisFunction(G4Step*step) {
//Do stuff here with the step, fill

 //variables, histograms, whatever...
};

In practice this might be
a Sensitive Detector or
perhaps a Stepping Action

This might be adequate for some purposes, and certainly it can be the most
CPU efficient manner af accessing the results.

However, there are some potential drawbacks:
● Need to rerun expensive Geant4 simulation if analysis changes or bugs
 are found.
● Order steps are delivered might change as Geant4 evolve with
 multi-threading and vectorisation (SIMD) support, so some analyses
 might break.
● We are getting fed the results step-by-step, lacking the global overview

- like observing a painting 1cm^2 at a time (hey, at least it wasn't a car analogy!)

 - so some questions might be difficult (or error-prone) to answer
 (what is the origin of these weird electrons over here?!?)
● Any kind of data (incl. job metadata) you want stored requires you
 have to go through the hassle of extracting and storing it yourself.

All, in all, perhaps not
so efficient in terms
of manpower as it can
be in terms of CPU...

All, in all, perhaps not
so efficient in terms
of manpower as it can
be in terms of CPU...

So therefore we provide...So therefore we provide...

In our framework, we do
this by making so-called
“custom hooks”. However,
it is rarely needed.

34

GRIFF – Geant4 Results in Friendly FormatGRIFF – Geant4 Results in Friendly Format
https://ess-ics.atlassian.net/wiki/display/DG/Griffhttps://ess-ics.atlassian.net/wiki/display/DG/Griff

Three output modes (*:default):
FULL : Write all steps
REDUCED*: 1 merged step per segment
MINIMAL : No steps, just tracks and segments
Option to add custom output filters.

Three output modes (*:default):
FULL : Write all steps
REDUCED*: 1 merged step per segment
MINIMAL : No steps, just tracks and segments
Option to add custom output filters.

A custom output format
containing entire events
A custom output format
containing entire events

Allows object-oriented analysis code,
with convenient links between objects

(mother<->daughters, trk<->segments<->steps)

Allows object-oriented analysis code,
with convenient links between objects

(mother<->daughters, trk<->segments<->steps)

Introduces convenient
“segment” concept

No need for custom
book-keeping of meta-data!

Reading does not depend on Geant4,
shielding your analysis from Geant4
development changes.

Reading does not depend on Geant4,
shielding your analysis from Geant4
development changes.

Highly optimised
For speed and
storage size

Highly optimised
For speed and
storage size

35

Enable GRIFF output in our frameworkEnable GRIFF output in our framework

launcher.setOutput(“tricorder”,”FULL”)

It is actually on by default... (set output to “none” to disable).

As always, you can change the default In your simulation script:

and you can override at the command line:

$> ess_tricorder_sim -otricorder.griff -mFULL

36

Example GRIFF analysisExample GRIFF analysis

If you wish, Griff will deal with the
command line arguments, loading
the requested files

If you wish, Griff will deal with the
command line arguments, loading
the requested files

Tricorder/app_ana/main.cc becomes
the command ess_tricorder_ana

providing meta-data access...providing meta-data access...

seemless looping over events
in all requested inputfiles ...
seemless looping over events
in all requested inputfiles ...

and object oriented access
to event data
and object oriented access
to event data

 … unless you actually want to access
different setups, in which case Griff will nicely inform
you whenever the setup changes between events...

If multiple input files are specified, Griff will protect you
from yourself by checking that the files are compatible
(i.e. their metadata implies consistent setup) ...Can of course be loaded

from python as well!
Can of course be loaded

from python as well!

37

Same GRIFF analysis with filters and iterators ratherSame GRIFF analysis with filters and iterators rather
than for-loops and if-statementsthan for-loops and if-statements

… in particular useful as your analysis code
grows and in danger of getting needlessly
complicated and obscure

… in particular useful as your analysis code
grows and in danger of getting needlessly
complicated and obscure

If needed, we can add more types of
filters to the standard catalogue.
 – or you can easily write your own

If needed, we can add more types of
filters to the standard catalogue.
 – or you can easily write your own

Setup iterators with associated filters
(convenient control of analysis “cuts”, just 1-line
needs to be changed to add/remove a filter)

Setup iterators with associated filters
(convenient control of analysis “cuts”, just 1-line
needs to be changed to add/remove a filter)

Usage in the event loop for very
compact and readable code
Usage in the event loop for very
compact and readable code

purely optional of course,
but highly recommended
purely optional of course,
but highly recommended

38

Same GRIFF analysis producing histograms ratherSame GRIFF analysis producing histograms rather
than useless print-statementsthan useless print-statements

1) book1) book

2) fill2) fill

3) write out3) write out

4) ess_simplehists_browse results.shist

And perhaps 5): Load the histograms in python and
perform your final analysis there, if needed (perhaps
combining results from different geometry setups, etc.)

39

Final analysis and plots with python scriptsFinal analysis and plots with python scripts

Using python (with matplotlib, numpy, scipy) is
full-featured, freely available, and ties very
nicely into everything else we do.

Simple “hello world” example:

(+
fix

es
)

Slightly more interesting example:

In reality, you will often open files
produced in C++ analysis and just
do final plotting (.shist, .griff, .txt)

40

Advanced materialAdvanced material
For mature or would-be-mature projectsFor mature or would-be-mature projects

41

How to manage larger projects:How to manage larger projects:
Using geometry modules inside each otherUsing geometry modules inside each other

We now have a clear mechanism for how to do this!
(integral to this is our system for handling geo-parameters)

Bandgem geo-module

“trd” detector geo-module

LoKI window-frame geo-module

LoKI tapered geo-module

42

Project specific solutions (here bandgem)Project specific solutions (here bandgem)

Responsible: G. Albani + Milano group
Framework help from KK and TK

Needed Geant4 sim:
● Integrate 2D extraction map,

based on Garfield sim.
● Model readout segmentation (“pads”)
● Efficient high-stat simulation & analysis
● Data visualisation in pad-view
Had already: Geometry + Griff analysis.

Garfield extraction map (G. Groci)

Step 1: segment counting gas
into virtual “pads” with unique copyNbs.

Step 2: custom hook which intercepts
G4Steps’s and applies correction factor
to eDep (also, shown here, visualisation option)

Step 3: custom simply binary data-format, writing
edep-per-pad info for each event, directly from G4 job.

(using Garfield map
 + “line/mesh interception”
code developed for --heatmap)

Step 4: Write small modules in C++ which extracts
relevant info from data files and provides summary
info to python-code for plotting. Write pad-viewer.

Pad-occupancy view, for a
given Illumination.

43

Project specific solutions (here bandgem)Project specific solutions (here bandgem)

Responsible: G. Albani + Milano group
Framework help from KK and TK

Needed Geant4 sim:
● Integrate 2D extraction map,

based on Garfield sim.
● Model readout segmentation (“pads”)
● Efficient high-stat simulation & analysis
● Data visualisation in pad-view
Had already: Geometry + Griff analysis.

Garfield extraction map (G. Groci)

Step 1: segment counting gas
into virtual “pads” with unique copyNbs.

Step 2: custom hook which intercepts
G4Steps’s and applies correction factor
to eDep (also, shown here, visualisation option)

Step 3: custom simply binary data-format, writing
edep-per-pad info for each event, directly from G4 job.

(using Garfield map
 + “line/mesh interception”
code developed for --heatmap)

Step 4: Write small modules in C++ which extracts
relevant info from data files and provides summary
info to python-code for plotting. Write pad-viewer.

Pad-occupancy view, for a
given Illumination.

Most important point of this slide:

The code was developed in our framework, thus we could help!
● Since we could easily inspect, run, understand & modify it
● Since we could rely on other framework features for solutions

44

● First of all, consider & ask if there is perhaps some obvious speedup
you could implement via code-changes…

● If not, then you probably need to use the cluster @ DMSC !

● Unfortunately this means:

– this will require you to be (even more) comfortable with the
terminal and the ssh / scp commands.

● On the plus-side:

– we provide utilities in dgcode for dealing with the batch system

– we are here to help

– the DG will get ~40TB of dedicated backed-up storage @ DMSC
this year. This is intended for testbeam-data etc., so might as well
learn how to get to it :-)

Needing more computing power?Needing more computing power?
https://ess-ics.atlassian.net/wiki/display/DG/How+to+work+at+the+DMSChttps://ess-ics.atlassian.net/wiki/display/DG/How+to+work+at+the+DMSC

45

Parameter scanningParameter scanning
At some point you are going to want to make a plot of some analysis result as a function
of one or more simulation parameter (geo/gen parameters, physics list, ...)

First of all, you better hope that all of the parameters in question can be modified
from the commandline (you didn't hardcode too much, did you?)

Next, you are facing a potential book-keeping nightmare... keeping track of which
results correspond to what parameters.

Fortunately, you are in luck!
(what a surprise after that intro!)

Fortunately, you are in luck!
(what a surprise after that intro!)

Assuming you are more or less following
our standard simulation project setup,
you simply first define which parameters
you want to assume which values for
which plots:

Assuming you are more or less following
our standard simulation project setup,
you simply first define which parameters
you want to assume which values for
which plots:

And then you have a script which can
launch all of these jobs for you:

ess_tricorder_scan

And then you have a script which can
launch all of these jobs for you:

ess_tricorder_scan

TriCorder/scripts/scanTriCorder/scripts/scan

46

$> ess_tricorder_scan -qlocal -d scanrundir/ -j4 --launch

$> ess_tricorder_scan -qdmsc:long -d scanrundir/ --launch

Voila, a script which you
can use to launch your
many jobs, either locally
or on the DMSC cluster
(from compile.esss.dk)

$> ess_tricorder_scan -s

Show the job listShow the job list

Launch locallyLaunch locally

Launch at DMSCLaunch at DMSC

Pro-tip 1: reduce nevts/job
to 1 and launch the scan
locally first and catch any
Configuration errors
(waiting 2 days in a cluster queue
 just to then have all jobs failing
 due to a misspelled variable
 name might ruin your mood)

Pro-tip 1: reduce nevts/job
to 1 and launch the scan
locally first and catch any
Configuration errors
(waiting 2 days in a cluster queue
 just to then have all jobs failing
 due to a misspelled variable
 name might ruin your mood)

Pro-tip 2: You can also use
this infrastructure to launch
the same sim. setup over
many cluster jobs (with
different random seeds),
and merge the results

Pro-tip 2: You can also use
this infrastructure to launch
the same sim. setup over
many cluster jobs (with
different random seeds),
and merge the results

47

Parameter scanning – Parameter scanning – analysinganalysing results results

After scan is complete, you simply point our ScanLoader at the directory where
you ran it (if on the cluster, you obviously first copy them down to your laptop)

But getting a bit out of scope now for
a 2-hour tutorial, so will simply show some
example resulting plots on the next slide :-)

But getting a bit out of scope now for
a 2-hour tutorial, so will simply show some
example resulting plots on the next slide :-)

48

Parameter scanning – examples of resultsParameter scanning – examples of results
Study of detector efficiency dependency
on various geometrical parameters
Study of detector efficiency dependency
on various geometrical parameters

Study of how fractions of ingredients in
a material mixture leads to different
shielding properties

Study of how fractions of ingredients in
a material mixture leads to different
shielding properties

49

FinFin
(almost)(almost)

50

Please remember: Wiki & DGSWPlease remember: Wiki & DGSW

● Wiki has a lot of documentation, please make use of it!

– https://ess-ics.atlassian.net/wiki/display/DGPrivate

– https://ess-ics.atlassian.net/wiki/display/DG

– https://ess-ics.atlassian.net/wiki/display/DG/Computing
● Please pose questions (even “stupid” ones), support requests,

etc. by opening issues in the DGSW Jira project, rather than
email.

– https://ess-ics.atlassian.net/projects/DGSW

https://ess-ics.atlassian.net/wiki/display/DGPrivate
https://ess-ics.atlassian.net/wiki/display/DG
https://ess-ics.atlassian.net/wiki/display/DG/Computing
https://ess-ics.atlassian.net/projects/DGSW

51

FinFin
(for real)(for real)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

