EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

The ESSnuSB Accumulator Ring

Maja Olvegård, Uppsala University
Upgrading Existing High Power Linacs Lund, November 8, 2016

With great support from:
Magda Kowalska, Elena Wildner, Hannes Bartosik, Elena Benedetto, Vincenzo Forte, Frank Schmidt, Horst Schonauer and Tord Ekelöf

- The ESSnuSB project
- The ring and the beam
- Space charge simulations
- Outlook

Leptonic CP violation

- Leptonic CP violation could explain the matter - antimatter asymmetry
- Measure the CP violating phase by comparing neutrino and antineutrino oscillation levels.

2. a large neutrino detector at a suitable

ESSnuSB

M. Olvegård

CERT
Nov 7, 2016

European Spallation Source, Lund

5 MW proton beam 3 ms pulses 1 e 15 protons/pulse

5 MW H-/proton beam <2 μ s pulses

ESS \rightarrow ESSnuSB

Ring requirements

- Accumulate/compress 1.1E15 protons to pulses $<2 \mu \mathrm{~s}$
- Loss free injection and extraction
- charge exchange injection with phase space painting
- H - acceleration in the linac

Linac Operation Mode

Scheme A: $\quad 2-4$ stacked rings, similar to PSB

Scheme B: $\Rightarrow 1$ ring, 70 Hz pulsing of the linac

The ring

- An up-scaled and modified version of the SNS accumulator.
- Four straight sections for injection, RF, etc.
- FODO lattice in the arcs.
- Ring design made by J. Jonnerby and H. Schönauer.
- Double harmonic RF for capture.
- Three working points tested:
a) $Q_{x}=10.395 \quad Q_{y}=11.321$
b) $Q_{x}=10.395 \quad Q_{y}=11.254$
c) $Q_{x}=10.395 Q_{y}=11.202$

Injection

M. Olvegård

CERN

Space Charge Simulations

- Beam tracking with space charge in pyORBIT and PTCORBIT to test the ring design. Start with $1 / 4$ of a linac pulse per fill, corresponding to 540 injected turns.

1. First simulation series to chose working point.

- Assuming painting complete, full intensity from start

2. Simulate full injection with painting

- Try with space charge turned on and turned off.
- 2.5D transverse space charge model, "sliced" 2D
- 1D longitudinal space charge model
- Large aperture ($\sim 100 \mathrm{~mm}$ radius), losses not yet studied.

1. Full intensity from start

- 2.75 E 14 protons in the ring.
- Track for 500 turns.
- Uniformly distributed longitudinal distribution with 15% extraction gap.
- Gaussian energy distribution with rms 0.02\%.
- Gaussian transverse distributions, matched at injection.
- Normalized 86.5\% emittance of 100 mm mrad, corresponding to geometrical rms emittance of 8.5 mm mrad.

1. Emittance evolution

Horizontal emittance increase

Vertical emittance increase

Reminder:

- I track $1 / 4$ of the linac intensity, corresponding to 2.75 E 14 protons, for 500 turns.
- Initial emittance: 8.5 mm mrad, rms. (100 mm mrad normalized, 86.5\%)

1. Tune spread

M. Olvegård

CERN
Nov 7, 2016

- Tune spread about 0.2 in both planes. Similar result for working points a), b) and c).
- Matches the analytically calculated Laslett tune shift for a Gaussian beam, uniform in the longitudinal plane.

2. Transverse Painting

M. Olvegård

CERN Nov 7, 2016

- Inject during 550 turns \rightarrow fill time 0.7 ms.
- Final intensity $1 / 4$ of a linac pulse, i.e. 2.75e14 protons.
- Injected rms emittance 0.084 mm mrad.
- Uniformly distributed "bunch" that fills 85% of the ring.

2. Emittance with painting

M. Olvegård

CERN Nov 7, 2016

The target rms emittance depends on the final distribution shape.

11-12 mm mrad

- vertical
$Q_{x}=10.395$
a) $\quad Q_{y}=11.321$
b) $\quad Q_{y}=11.254$
c) $Q_{y}=11.202$

2. Tune Spread

M. Olvegård

CERN
Nov 7, 2016

2. Beam profile with painting

- Revisit lattice design
- help from experts?
- Remodel injection painting
- more uniform transverse distribution
- diagnostic for the foil in pyORBIT?
- look at 95\% emittances
- look at apertures and losses
- Looking at effect of micro-bunching?
- requires 3D space charge model: heavy simulations.
- Test the intensity limit of the ring
$-1 / 3$ or even $1 / 2$ of the linac pulse?

Extra slides

ESS \rightarrow ESSnuSB

M. Olvegård

CERN

The ESS Linac Beam

Bunch train duration	3 ms
Bunch duration	3 ps
\# protons/train	1.1 E 15
Norm. emittance, rms	0.25 mm mrad
Energy spread, rms	0.02%
Train rep. rate	14 Hz
Bunch frequency	352 MHz

M. Olvegård
\section*{CERN}
Nov 7, 2016

Longitudinal distribution

pyORBIT

Emittance during painting

ACCSIM

pyORBIT Vs ACCSIM

