

The ESSnuSB Accumulator Ring

Maja Olvegård, Uppsala University

Upgrading Existing High Power Linacs Lund, November 8, 2016

With great support from:

Magda Kowalska, Elena Wildner, Hannes Bartosik, Elena Benedetto, Vincenzo Forte, Frank Schmidt, Horst Schonauer and Tord Ekelöf

- The ESSnuSB project
- The ring and the beam
- Space charge simulations
- Outlook

Leptonic CP violation

- M. Olvegård CERN Nov 7, 2016
- Leptonic CP violation could explain the matter – antimatter asymmetry
- Measure the CP violating phase by comparing neutrino and antineutrino oscillation levels.
- Such an experiment requires
 - 1. an intense, clean neutrino beam
 - ► a powerful proton driver
 - 2. a large neutrino detector at a suitable location

ESSnuSB

5 MW proton beam 3 ms pulses 1e15 protons/pulse

5 MW H-/proton beam <2 μs pulses

M. Olvegård

UNIVERSITET

CERN Nov 7, 2016

Ring requirements

- Accumulate/compress 1.1E15 protons to pulses <2 μs
- Loss free injection and extraction
 - charge exchange injection with phase space painting
 - H- acceleration in the linac

Linac Operation Mode

M. Olvegård

CERN Nov 7, 2016

Scheme A: \longrightarrow 2 - 4 stacked rings, similar to PSB

Scheme B: 1 ring, 70 Hz pulsing of the linac

The ring

M. Olvegård CERN Nov 7, 2016

- An up-scaled and modified version of the SNS accumulator.
 - Four straight sections for injection, RF, etc.
 - FODO lattice in the arcs.
- Ring design made by J. Jonnerby and H. Schönauer.
- Double harmonic RF for capture.
- Three working points tested:

a)
$$Q_x = 10.395$$
 $Q_y = 11.321$

b)
$$Q_x = 10.395$$
 $Q_y = 11.254$

c)
$$Q_x = 10.395$$
 $Q_y = 11.202$

Injection

Nov 7, 2016

UPPSALA UNIVERSITET

Space Charge Simulations

- Beam tracking with space charge in pyORBIT and PTC-ORBIT to test the ring design. Start with 1/4 of a linac pulse per fill, corresponding to 540 injected turns.
- **1**. First simulation series to chose working point.
 - Assuming painting complete, full intensity from start
- 2. Simulate full injection with painting
 - Try with space charge turned on and turned off.
- 2.5D transverse space charge model, "sliced" 2D
- 1D longitudinal space charge model
- Large aperture (~100 mm radius), losses not yet studied.

1. Full intensity from start

- 2.75E14 protons in the ring.
- Track for 500 turns.
- Uniformly distributed longitudinal distribution with 15% extraction gap.
- Gaussian energy distribution with rms 0.02%.
- Gaussian transverse distributions, matched at injection.
- Normalized 86.5% emittance of 100 mm mrad, corresponding to geometrical rms emittance of 8.5 mm mrad.

M. Olvegård

CERN Nov 7, 2016

1. Emittance evolution

Reminder:

- I track 1/4 of the linac intensity, corresponding to 2.75E14 protons, for 500 turns.
- Initial emittance: 8.5 mm mrad, rms. (100 mm mrad normalized, 86.5%)

1. Tune spread

M. Olvegård

UNIVERSITET

CERN Nov 7, 2016

- Tune spread about 0.2 in both planes. Similar result for working points a), b) and c).
- Matches the analytically calculated Laslett tune shift for a Gaussian beam, uniform in the longitudinal plane.

2. Transverse Painting

- Inject during 550 turns \rightarrow fill time 0.7 ms.
- Final intensity 1/4 of a linac pulse, i.e. 2.75e14 protons.
- Injected rms emittance 0.084 mm mrad.
- Uniformly distributed "bunch" that fills 85% of the ring.

2. Emittance with painting

M. Olvegård

CERN Nov 7, 2016

2. Tune Spread

M. Olvegård

UPPSALA UNIVERSITET

CERN Nov 7, 2016

2. Beam profile with painting

M. Olvegård

CERN Nov 7, 2016

Painting can probably be improved for more uniform profiles

Outlook

- UPPSALA UNIVERSITET
- M. Olvegård CERN Nov 7, 2016
- Revisit lattice design
 - help from experts?
- Remodel injection painting
 - more uniform transverse distribution
 - diagnostic for the foil in pyORBIT?
 - look at 95% emittances
 - look at apertures and losses
- Looking at effect of micro-bunching?
 - requires 3D space charge model: heavy simulations.
- Test the intensity limit of the ring
 - 1/3 or even 1/2 of the linac pulse?

Extra slides

ESS → ESSnuSB

The magnetic horn is normal-conducting powered with 350 kA => can only be powered for $< 2 \mu s$.

Need an accumulator ring to reduce the pulse length.

M. Olvegård

CERN Nov 7, 2016

The ESS Linac Beam

Bunch train duration	3 ms
Bunch duration	3 ps
# protons/train	1.1E15
Norm. emittance, rms	0.25 mm mrad
Energy spread, rms	0.02 %
Train rep. rate	14 Hz
Bunch frequency	352 MHz

Lattice

M. Olvegård

UPPSALA UNIVERSITET

CERN Nov 7, 2016

Longitudinal distribution

M. Olvegård

UPPSALA

CERN

pyORBIT Vs ACCSIM

