Plasma Processing to Improve the Performance of the SNS Superconducting Linac

Marc Doleans on behalf of SCL systems group ORNL/SNS

Workshop:

Upgrading existing high power proton linacs

ORNL is managed by UT-Battelle for the US Department of Energy

In-situ plasma processing to increase linac energy

- Higher linac energy provides more margin for reliable operation at 1.4 MW
- Most cavities at SNS are limited by field emission (FE) leading to thermal instability in end-groups
 - Average accelerating gradients are 12 and 13 MV/m for the two cavity geometries
- Developed in-situ plasma processing to reduce FE and increase accelerating gradients*

*M. Doleans et al. NIMA 812 (2016) pp50-59

In-situ plasma processing to reduce FE

Plasma processing aims at

- Reducing FE by increasing work function of cavity RF surface
- Enabling operation at higher accelerating gradients
- Scaling from Fowler-Nordheim equation

$$J = a \frac{(\beta E)^2}{\phi} e^{-b \frac{\phi^{3/2}}{\beta E} + \frac{c}{\phi^{1/2}}}$$
$$dJ = 0 \implies \frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\phi}{\phi}$$

- J : current density
- E : surface electric field
- $\boldsymbol{\beta}$: field enhancement factor
- $\boldsymbol{\varphi}$: work function

- 10-20% increase in ϕ leads to 20-30% increase in Eacc

Hydrocarbon contaminants on Nb surfaces

Hydrocarbon contaminants observed on all Nb surfaces

- Volatile hydrocarbons released from cryomodule surfaces during thermal cycle
- Hydrocarbons on offline spare cavity surfaces
- Hydrocarbons fragments seen in secondary ion mass spectrometry (SIMS)
 - Mechanically polished niobium samples
 - Chemically polished niobium samples (BCP)

Hydrocarbons tends to lower work function of Nb surface

- Develop in-situ plasma processing to remove hydrocarbons from cavity RF surface

Low e⁻ temperature and low-density reactive plasma for removing hydrocarbons in SNS cavities

Plasma is a rich and reactive environment

- lons, e-, neutrals, excited neutrals, molecules, radicals, UV...
- Plasma processing is a versatile technique used for various purposes
 - Cleaning, activation, deposition, crosslinking, etching....

Chosen to develop a technique using reactive oxygen plasma at room-temperature

Volatile by-products are formed through oxidation of hydrocarbons and pumped out

Plasma processing increases the work function of the Nb surface *

- SIMS measurement shows that the hydrocarbons are removed from the Nb top surface
- Scanning Kelvin Probe shows that the work function increases
 - Nb samples ϕ =4.7 eV initially
 - Neon-oxygen plasma processing systematically improves the work function
 - ~0.8 eV increase measured
 - Work function tends to degrade after venting to air

*Applied Surface Science 369 (2016) 29-35

Neon-oxygen cleaning applied to SNS HB cavities

- Hydrocarbons removed from top surface through oxidation and formation of volatile by-products such as
 - H₂, H₂O, CO and CO₂
- Residual gas analysis used to monitor plasma cleaning
 - Depletion of surface hydrocarbons within 30-60 minutes per cell
 - Removes ~monolayers equivalent of hydrocarbons
 - Six cells of a cavity processed sequentially

Plasma processing progress at SNS

R&D with Nb samples and offline cavities

In-situ processing in linac tunnel

Processing of 6-cell cavity in HTA*

Processing of cryomodule in test cave

1st Plasma processing of a cryomodule

- Offline high-beta cryomodule in Test Cave (CM00012)
- Main plasma processing hardware for cryomodule
 - Plasma processing gas cart and RF cart(s)
- Plasma processing technique successfully applied to 4 cavities of cryomodule

RF configuration during plasma processing

- All cavities disconnected from High power RF system
- High power top-hats on each cavity
 - No need to remove air side of coupler assemblies
- **Cavities processed iteratively**
 - Multiple RF carts can allow simultaneous processing of cavities
- Cavities being plasma processed
 - FPC and field probe connected to RF cart
 - Camera monitors any discharge in FPC

Plasma

RF

Cart

Hydrocarbons removed from CM00012

- Estimated amount of hydrocarbons removed
 - Done by Integration of RGA signal from oxidation by-products such as CO₂
 - Few monolayers equivalent
- Multiple cleaning cycles done over 2 weeks
- Not same amount of contamination in all cells
- Beneficial to spend more time plasma processing cells with largest contamination
 - Lesson learned applied during cleaning of cryomodules in tunnel

Performance of CM00012 cryomodule improved after plasma processing

- Stable accelerating gradient at 60 Hz improved for all 4 cavities
- Gradients improved by ~25%
 - Avg. gradient 12.3 MV/m before plasma processing
 - Avg. gradient 15.3 MV/m after plasma processing
 - Cavity A improved by 35%
 - Cavity B improved by 15%
 - Initially limited by combination of multipacting and hot spot in end group
 - Plasma processing reduced severity of multipacting which helped improving performance

Radiation level reduced after plasma processing

- Examples of radiation signals from two cavities
- Plasma processing has been observed to reduce radiation related to both field emission and multipacting
- Reduction varies between cavities

Field emission regime

Multipacting regime

PLASMA PROCESSING OF CRYOMODULE IN SNS LINAC TUNNEL

15 M. Doleans, Plasma processing at SNS

Beam

Plasma processing in SNS linac tunnel

- Warm-up 2 cryomodules
- Sections seeing process gas during processing
 - Ion pumps and CCGs off

Adjacent sections not seeing process gas

- Close sector gate valves to protect nearest cold cryomodules

Plasma processing hardware adjacent to CM00023

Applied ALARA: Radiation survey indicated best location for minimum radiation exposure during work (<1 mrem/hr) OAK RIDGE SPALLATION National Laboratory SOURCE

3 cryomodules successfully plasma processed so far

- 1 offline cryomodule
- 2 cryomodule in tunnel
- Improvement of Eacc
 - Range from 0.2 MV/m to 5.5 MV/m
 - 2.5 MV/m increase on average (21%)
 - No cavity performance degradation from plasma processing observed so far

Cryomodules operating stably

 No change of performance after months of operation

SNS linac

- Currently operating at 972 MeV
- Highest energy on production target at 60 Hz to date

CONCLUSION

- In-situ plasma processing developed at SNS to increase accelerating gradient of cryomodules in operation
- Plasma cleans surface hydrocarbons and increase work function to reduce field emission
 - Also helps removing adsorbed gases and reduce SEY
- So far, plasma processing was successfully applied to
 - 2 cavities in HTA
 - 1 offline cryomodule
 - 2 cryomodules in linac tunnel
- Further deployment of plasma processing in SNS linac tunnel to high-beta cryomodules planned for FY17
- Near term goal is to reach 1 GeV linac beam energy at 60 Hz
- Applicability of the new technique to other SRF cavities is being explored

