Adaptation of XFEL/ILC-type Cryo-module for CW Operation at LCLS-II: Issues, Solutions and Results

Vyacheslav Yakovlev
Upgrading Existing High Power Proton Linacs Workshop
9 November, 2016
Outline

- Why XFEL/ILC technology for LCLS II?
- LCLS II requirements versus XFEL/ILC:
 - CW operation;
 - low beam current.
- Issues and necessary CM design changes:
 - Cryo-load;
 - HOMs and wakes;
 - Couplers (HP and HOM);
 - Tuners
- Test results
- Conclusion
LCLS II Linac

- Thirty-five **1.3 GHz 8-cavity cryomodules**
- Two **3.9 GHz 8-cavity cryomodules**
- Four cold segments (L0, L1, L2 and L3) which are separated by warm beamline sections.
Why XFEL/ILC technology for LCLS II?

- XFEL/ILC technology is very well-matured, there is a great experience accumulated by DESY in R&D, design and mass production: >100 CMs successfully manufactured and installed in XFEL tunnel;
- XFEL technological culture developed by DESY provides very good performance of the CMs – gradient, cryo-losses, small field emission, high production yield;
- XFEL technology has been successfully transferred to US; US National Laboratory, FNAL, has a good experience in ILC CM production: CM2 was the first CM demonstrated the gain 250 MeV/CM;
- XFEL CMs have the same application as LCLS II – acceleration of short electron bunches for the light source.
XFEL cryomodules (DESY):

- eight SC cavities/CM
- one CS quad/CM
- 1.3 GHz, 9-cell elliptical cavity

CM2 (Fermilab)
250 MeV/CM
LCLS II requirements versus XFEL/ILC:

<table>
<thead>
<tr>
<th>Issue</th>
<th>XFEL</th>
<th>LCLS II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>pulsed</td>
<td>CW</td>
<td></td>
</tr>
<tr>
<td>Duty factor, %</td>
<td>0.65</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Beam current, mA</td>
<td>5</td>
<td>0.1 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Gradient, MeV/m</td>
<td>23.6</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total cryo-load@2K, W/CM</td>
<td>14</td>
<td>80*</td>
<td>(1)Q0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2)He vessel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3)HOM coupler</td>
</tr>
<tr>
<td>Bandwidth, Hz</td>
<td>280</td>
<td>30</td>
<td>(4)Tuner</td>
</tr>
<tr>
<td>Average input RF power/cavity, kW</td>
<td>2.5</td>
<td>6</td>
<td>(5)HP coupler</td>
</tr>
</tbody>
</table>

*Use of one 4 kW cryo-plant
Requirements for Q_0:

Dynamic losses:
- HOM excitation
- Transient radiation
- Couplers
- HOM dampers

Static losses:
- Couplers
- Magnet leads

$Q_0 \geq 2.7 \times 10^{10} @ 2K, 16\text{ MeV/m}$ in order to get the load $\sim 80\text{ W/CM}$

<table>
<thead>
<tr>
<th>Cryomodule</th>
<th>L0</th>
<th>L1</th>
<th>HL</th>
<th>L2</th>
<th>L3 CM16</th>
</tr>
</thead>
<tbody>
<tr>
<td>E for all cavities powered [MV/m]</td>
<td>14.00</td>
<td>15.00</td>
<td>11.72</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Baseline E with fraction of cavities powered [MV/m]</td>
<td>16.00</td>
<td>16.00</td>
<td>12.50</td>
<td>16.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Q</td>
<td>2.7×10^{10}</td>
<td>2.7×10^{10}</td>
<td>2.5×10^{9}</td>
<td>2.7×10^{10}</td>
<td>2.7×10^{10}</td>
</tr>
<tr>
<td>Number of cryomodules</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Number of cavities per CM</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Number of cavities total</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>96</td>
<td>8</td>
</tr>
<tr>
<td>Baseline powered cavities total</td>
<td>7.0</td>
<td>15.0</td>
<td>15.0</td>
<td>90.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Baseline fraction of cavities powered</td>
<td>0.88</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Cavity length [m]</td>
<td>1.038</td>
<td>1.038</td>
<td>0.346</td>
<td>1.038</td>
<td>1.038</td>
</tr>
<tr>
<td>R/Q [ohms]</td>
<td>1012</td>
<td>1012</td>
<td>750</td>
<td>1012</td>
<td>1012</td>
</tr>
<tr>
<td>Baseline beam current [mA]</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>New beam current for analysis [mA]</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Dynamic RF lead per cavity (W)</td>
<td>7.73</td>
<td>8.87</td>
<td>8.77</td>
<td>8.87</td>
<td>8.87</td>
</tr>
</tbody>
</table>

HOMs with baseline 0.3 mA current [W]	8	8	15	10	30
HOMs with new current for analysis [W]	2.7	2.7	5.0	3.3	10.0
Transient wake power [W]	4.8	4.8	4.8	4.8	4.8
Portion transient wake power to 2K	0.20	0.20	0.20	0.20	0.20
Remaining portion of transient wake power to 40K	0.80	0.80	0.80	0.80	0.80

<table>
<thead>
<tr>
<th>Temperature Level</th>
<th>2K</th>
<th></th>
<th>2K</th>
<th></th>
<th>2K</th>
<th></th>
<th>2K</th>
<th></th>
<th>2K</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF dynamic load</td>
<td>61.83</td>
<td></td>
<td>70.98</td>
<td></td>
<td>70.15</td>
<td></td>
<td>70.98</td>
<td></td>
<td>70.98</td>
<td></td>
</tr>
<tr>
<td>Input coupler</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Magnet current leads</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>0.56</td>
<td>0.56</td>
<td>0.58</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Electric heater</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Dynamic losses, other beamline components</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>HOM absorber (conduction to 2 K)</td>
<td></td>
</tr>
<tr>
<td>Static, dynamic sum</td>
<td>7.46</td>
<td>64.08</td>
<td>7.46</td>
<td>73.23</td>
<td>7.46</td>
<td>72.37</td>
<td>7.46</td>
<td>73.23</td>
<td>7.46</td>
<td></td>
</tr>
<tr>
<td>Active CM 2K Sum [W]</td>
<td>71.5</td>
<td>80.7</td>
<td>79.8</td>
<td>80.7</td>
<td>81.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
N-doping:
- “Standard” XFEL technology provides ~1.4×10^{10}@2K, 20-23 MeV/m (CM);

Cavity Treatment:
- Bulk EP
- 800 C anneal for 3 hours in vacuum
- 2 minutes @ 800C nitrogen diffusion
- 800 C for 6 minutes in vacuum
- Vacuum cooling
- 5 microns EP

A. Grassellino, N-doping: progress in development and understanding, SRF15
N-doping:

- Provides Q_0 2.5-3 times higher than “standard” processing.
- Trade-off:
 - Lower acceleration gradient, 20-22 MeV/m – not an issue for LCLS II;
 - Higher sensitivity to the residual magnetic field.
- Remedy:
 - Magnetic hygiene and shielding improvement
 - Fast cooldown

VTS test results of dressed prototype cavities

A. Grassellino, N-doping: progress in development and understanding, SRF15
Fast cooldown

- $Q_0 = G/R_s$; $R_s = 10$ nOhm for $Q_0 = 2.7 \times 10^{10}$

 \[R_s = R_0 + R_{BCS} + R_{TF} \]

 $R_{TF} = s \cdot \eta \cdot B_{res}$, s is sensitivity to residual magnetic field B_{res}, η is flux expulsion efficiency. η is material-dependent!

- For pCM Nb (Wah Chang):

 $R_{BCS} = 4.5$ nOhm, $R_0 = 1-2$ nOhm, $R_{TF} \approx 1$ Ohm for $5 \text{mG} \rightarrow Q_0 = 3.5 \times 10^{10}$

- For production material:

 Change heat treatment temperature from 800 C to 900 C + deeper EP (S. Posen):

 $R_{BCS} = 4.5$ nOhm, $R_0 \approx 2$ nOhm, $R_{TF} \approx 2$ Ohm for $B_{res} \approx 5 \text{mG} \rightarrow Q_0 > 3 \times 10^{10}$

"Fast": 2 – 3 K/minute, "slow": < 0.5 K/minute

A. Grassellino, N-doping: progress in development and understanding, SRF15
Impact of Modified LCLS-II Recipe on Q_0

Cavities 17, 18, 19: modified recipe - 900 C degas, ~200 μm EP, 2min/6min N doping at 800 C

Cavities 03…16: First production tests at Fermilab, baseline LCLS-II recipe - 800 C degas, ~130 μm EP, 2min/6min N doping at 800 C

Studies leading to modified recipe:
Ambient Magnetic Field Management Methods

- 2-layer passive magnetic shielding
 - Manufactured from Cryoperm 10

- Strict magnetic hygiene program
 - Material choices
 - Inspection & demagnetization of components near cavities
 - Demagnetization of vacuum vessel
 - Demagnetization of assembled cryomodule / vessel

- Active longitudinal magnetic field cancellation

Magnetic field diagnostics:

- 4 cavities instrumented with fluxgates inside helium vessel (2 fluxgates/cavity)
- 5 fluxgates outside the cavities mounted between the two layers of magnetic shields

Fluxgates monitored during cryomodule assembly

Ambient Magnetic Field Management Methods

Helmholtz coils wound onto vessel directly

2-layer magnetic shields manufactured from Cryoperm 10

S. Chandrasekaran, Linac 2016, TUPLR027
ILC / XFEL CM Modifications for LCLS-II

• Component design – based on TESLA / ILC / XFEL designs
 – Cavities – XFEL identical mechanically, processed to high Q0
 – Helium vessel – XFEL-like (modified ILC with bellows at end for end lever tuner)
 – HOM coupler – XFEL-like
 – Magnetic shielding – increased from XFEL to maintain high Q0
 – Tuner – XFEL-like end-lever style
 – Magnet – Fermilab/KEK design split quadrupole
 – BPM – DESY button-style with modified feedthrough
 – Coupler – XFEL-like (TTF3) modified for higher QL and 6 kW CW

• Concerns based on global experience
 – Tuner motor and piezo lifetime: included access ports
 – Maintain high Q0 by minimizing flux trapping: new requirement
 – constraints on cool-down rate through transition temperature

T. Peterson, LCLII 1.3 GHz Cryomodule, LCLS II meeting, 12 May 2015.
Cavity modifications

100 mm diameter two-phase pipe

HP coupler (XFEL-like)

Helium vessel (XFEL-like)

Tuner (XFEL-like end-lever style)

Yu. Orlov
Cryomodule Thermal and Hydraulic Design

• LCLS-II CM is a modified TESLA/XFEL CM for CW mode operation
 – Thermal shields, intercept flow, and cryogenic supply and return flow in series through a string of cryomodules
• Heat load range (design within the cryomodule includes generous margins)
 – 80 to 150 W per cryomodule at 2 K depending on local HOM deposition and cavity Q₀
 – A cavity may see as much as 25 W
• Cost savings: Omit 5 K thermal shield
 – Simplification since large dynamic heat at 2 K makes such a thermal shield of marginal value
 – Retain 5 K intercepts on input coupler
• Two-phase pipe is 100 mm diameter and closed at each end
 – 0.5% slope or 6 cm elevation difference over 12 m
 – 100 mm diameter two-phase pipe is nearly full at one end, nearly empty at the opposite end
• Cryomodule (CM) thermal and hydraulic design is well advanced
 – Steady-state flows and upset conditions with venting analyses
 – Liquid supply valve for 2-phase liquid level, cool-down valve for “fast” cool-down

T. Peterson, LCLII 1.3 GHz Cryomodule, LCLS II meeting, 12 May 2015.
Cryomodule Thermal and Hydraulic Design

Liquid Helium Levels in the 2-phase pipe with LCLS-II Tunnel Slope ~0.5%

Downstream End

[Diagram of a cryomodule with dimensions and labels indicating thermal and hydraulic design aspects.]

2-phase DS end

2-phase middle

2-phase US end

ID=97.4mm

+28mm

-28mm
Main couplers

- TTF-III couplers: input power = 300kW pulse, 2.5 kW average. Loaded Q is 4.5e6 (XFEL);
- LCLS-II input power = 6 kW/cavity CW including overhead. Loaded Q is 4e7 (XFEL).
- Necessary modifications:
 - Shorten antenna 8.5mm to provide $Q_{\text{ext}} = 4 \cdot 10^7$ with range (1-5)·10^7
 - 150-200 µm Cu plating of “warm” inner conductor \rightarrow reduce Temp
 - Improved thermal connection in CM at 5K and 50K
 - New design-Aluminum Waveguide box, copper flex ring
- Prototypes (ILC/TTF3 modified couplers) tested at HTS and installed/ tested at pCM

STUDY OF LCLS-II FUNDAMENTAL POWER COUPLER HEATING IN HTS INTEGRATED CAVITY TESTS, IPAC 2016
HOM feed-through

- ILC type feedthrough limits cw gradient < 10 MV/m. With antenna shape modification only it is possible to increase limit up to 40 MV/m, but Q_{HOM} will be higher.

- XFEL design is good for >20 MV/m at cw, tested at HTS and pCM.

- Further improvement is proposed (F-parts and antenna modification)

Tuner modification

DESIGN OPTIMIZATION

- Mechanical size limitations must fit on the “short-short” cavity (DESY tuner can fit only on “short-long”).
- Location of the piezo. Piezo stroke translates directly to the cavity (At DESY design only ½ of piezo stroke going to cavity). Piezo preloaded inside encapsulation.
- Robust/Low cost tuner frame design.
- Features that must prevent loosening of the tuner part during 20 years operation (20 thermo-cycles).
- Design elements that allow to replace active elements of tuner without dis-assembly tuner.
- Access ports in CM.
- **NEW ACTIVE COMPONENTS:**
 - Electromechanical actuator (stepper/gear/spindle) designed by Phytron per FNAL specs (LVA 52-LCLS II-UHVC-X1)
 - Piezo tuner- encapsulated piezo-stack designed by PI per FNAL specs (PI-885.51)

Y. Pischalnikov et al., “Design and Test of Compact Tuner for Narrow Bandwidth SRF Cavities.” In Proc. IPAC2015, Richmond, VA, USA.
Y. Pischalnikov et al., “LCLS II Tuner Assembly for the Prototype Cryomodule at FNAL.” In Proc. NAPAC2016, Chicago, IL, USA.
Prototype Cryomodule **Latest** Preliminary Results

- Cryomodule remnant field ≈ 1 mG
- Fast cool down in a cryomodule demonstrated
- Q0 ≈ 2.7e10 in a CW cryomodule

<table>
<thead>
<tr>
<th>Cavity</th>
<th>VTS</th>
<th>pCM after RF_Conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max Gradient [MV/m]</td>
<td>Q0 @16MV/m</td>
</tr>
<tr>
<td>TB9AES021</td>
<td>23</td>
<td>3.1E+10</td>
</tr>
<tr>
<td>TB9AES019</td>
<td>19.5</td>
<td>2.8E+10</td>
</tr>
<tr>
<td>TB9AES026</td>
<td>21.4</td>
<td>2.6E+10</td>
</tr>
<tr>
<td>TB9AES024</td>
<td>22.4</td>
<td>3.0E+10</td>
</tr>
<tr>
<td>TB9AES028</td>
<td>28.4</td>
<td>2.8E+10</td>
</tr>
<tr>
<td>TB9AES016</td>
<td>18</td>
<td>2.8E+10</td>
</tr>
<tr>
<td>TB9AES022</td>
<td>21.2</td>
<td>2.8E+10</td>
</tr>
<tr>
<td>TB9AES027</td>
<td>22.5</td>
<td>2.8E+10</td>
</tr>
<tr>
<td>Average</td>
<td>22.1</td>
<td>2.8E+10</td>
</tr>
</tbody>
</table>

| Total Voltage | 183.1 MV | 154.6 | 148.1 |

*Usable Gradient: demonstrated to stably run CW, FE < 50 mR/h, no dark current

**Fast cooldown from 45K, >40 g/sec, extrapolated from 2.11K

G. Wu, FNAL SRF Department meeting, 24 October 2016, https://indico.fnal.gov/conferenceDisplay.py?confId=13185
Acceptance Criteria

- Cryomodule total voltage exceeds specification
 - Average usable gradient exceeds 17 MV/m
 - Average gradient with field emission onset exceeds 16 MV/m
- Cryomodule heatload meets specification
 - Average Q0 ~ 2.7e10 at 16 MV/m
- HOM coupler meets specification
- Tuner exceeds specification
 - Cavity tuned to 1.300000 GHz +/- 20 kHz
- Coupler meets specification
 - 4e7 Nominal
 - Range 1e7 – 6e7
 - Stable temperature
- BPM meets specification
- Quadruple magnet exceeds specification
 - No quench up to 20 A current

E. Harms, et al, LINAC 2016, MOPLR022
What we cannot test until linac operation

• Beam dynamics effects
 – HOM absorber loads
 – HOM coupler performance
 – BPM functioning
 – Magnet package except for electrical checks

• Cryogenic operation of a long (up to 12 CM) string with full-sized cryogenic plant
 – System with integrated heating, full flow rates, and pressure drops
 – Long string on 0.5% slope (although CM’s will be tested on slope at Fermilab)
 – Full cryomodule-to-cryomodule interconnect