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* Present status of J-PARC H- source
* H- beam production mechanism in ion source
* Operation status of J-PARC RF source
* Feed back and beam monitoring system

* For further improvement for high power linac
e Results from offline R&D in Test-Stand
* Numerical modeling of RF plasma

* Summary



J-PARC H 1on source

Main Specifications

 Cesium (Cs) seeded

* Multi-cusp magnetic field configuration

* Radio Frequency (RF) — driven with internal antenna coil

* User operation started from Sep. 2014.
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H- beam production from RF-driven ion source
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Operation Status of J-PARC H- ion source:
Improvement of beam performance

* Operation of the RF ion source started from Sep. 2014.
* In this 2 years (RUN#57 — 69), several beam improvement has
been achieved without serious trouble.
* RUN#57 : RF H- ion source was commenced operation
 RUN#58 : User operation with the RF H- IS was started.
 RUN#60 : 3GeV-synchrotron demonstrated 1-MW-equivalent beam.
 RUN#66 : H- current for the user operation increased 33 = 45 mA.
e RUN#68 : 1,350 h continuous operation was achieved with 45 mA.

Beam current in these 2 years operation.
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Operation Status of J-PARC H" ion source: £
E Spark rate of the source
Decrease of spark rate and Feed Back £ extractor in this 2 years.
* Spark rate in the ion source extractor has been ] | ] |
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[1] H. Oguri, et al., “Operation Status of the J-PARC RF-driven H- lon Source”, 5t International Symposium on Negative lons, Beams and Sources, 12 — 16 Sep. 2016, Oxford, UK.



Feed back system

* The Feedback system also keeps fraction of H-
current within £0.1 mA.

* In order to keep the current constant, 3 stage
Feed Back (FB) systems are applied.

FB1:

FB2

FB3

FB1:

In general, H- current decreases due to Cs
evacuation (®). In the FB, 2MHz RF input
power increases (@) which leads to higher
H- production rate in the ion source.

: To minimize power reflection due to

impedance mismatching between plasma
and 50 Q2 output of power supply,
impedance matching and frequency tuning
are made each time RF power is varied.

: When the input RF power exceeds the

upper limit, Cs injector valve is opened for
Cs injection (®).

Instead of increase in the H- current, the RF
input power decreases by FB1 (@).

[1] H. Oguri, et al., Rev. Sci. Instrum. 87, 02B138 (2016).
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For further improvement for high power linac

lon Source status Present status Next stage

Beam current 45 mA (in user operation) >60 mA
Duty factor 1.25 % (25 Hz repetition, 500 us pulse width) 2.5 % (50 Hz repetition, 500 us pulse width)

Beam Emittance <1.5 1T mm mrad

Lifetime of ion source 1.5 -2 months > 2 months

For improvement of ion source performance ...

* Understandings of plasma behavior (distribution, particle flow, dominant reactions, ...) in RF sources

* Understandings of relation between ion source equipment, discharging conditions and plasma behavior
are necessary.

In J-PARC, following experimental and numerical studies are on-going.
e Off-line study for high current operation in Test-stands
* Development of Numerical model for RF plasma.



Offline R&D of ion source
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. Particle transport (e, H*, H,*, Cs*)
Development of numerical model Leap—Frog method
2D -3V (two dimensional in real space, three dimensional in velocity) 7 dv \
PIC-MC (Particle-In-Cell, Monte-Carlo) model is developed and applied. | m—=q(E+v X B) + Fec+ F; o1as
dt
. A
dr Coulomb collision
dt = V| (Binary Collision Model)
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[1] T. Shibata, et al., “High density plasma calculation of J-PARC RF negative ion source”, 5t International Symposium on Negative lons, Beams and Sources, 12 — 16 Sep. 2016, Oxford, UK.




APPENDIX : Calculation parameters

parameters ]

RF antenna current (J,) 280 A
RF antenna voltage (V) 1800 V
RF frequency (og) 2 MHz
H, gas pressure (p,,) 1.0 Pa
H, temperature (T};,) 500 K

Dealing of antenna voltage and current:

* Time variation of antenna current:
J(t) = J; sin (2meget)

 Amplitude of antenna voltage is given as follows;

1stturn : V, = 1800V
2" turn : V,=1800V x 0.75
3 turn: V,=1800V x0.5

Time variation of antenna voltage:
V(t) =V, cos (2mmgt)

Magnetic flux density distribution by filter,
cusp and electron suppression magnets.
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APPENDIX : Calculation parameters

* Two different conditions of RF plasma are calculated;

CASE 1 : low density plasma calculation (just after plasma ignition)
CASE 2 : high density plasma calculation (reaching to steady state)

ChsE chsez
1x10125s

Time step width for orbit (At) 1x10%3s

Time step width for collision (At_,) 1x10s 1x1010s
Cell width for FDTD (Ax) 2x103m 2x103m
Particle number 10° - 10° 106 - 10’
Particle weight 107 - 108 108 -10°
Initial electron density 6.0 x 1016 m-3 1.0 x 1017 m3
Initial proton density 6.0 x 101> m?3 1.0 x 1015 m?3
5.4 x 1016 m-3 9.9 x 1016 m-3

Initial H2+ density



density (m'3)

Time variation of spatially averaged plasma density

e Plasma density: n_ ~ 10%° —-10°m-3
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* Numerical simulation for (i) ignition and (ii)
steady-state phase RF plasma has been made.

* In (i) E-mode phase, low density (n, ~ 10" m™)
RF plasma takes place.

e After 1 us, RF plasma transition from E-mode
to H-mode is seen.

* In H-mode (steady state) plasma (ii), electron
density oscillation frequency is ~ 4 MHz,
doubled value of RF frequency. The plasma
density is in the order of n, ~ 10*° m= for this
case (50 kW power injection from internal
antenna).

[1] T. Shibata, et al., “High density plasma calculation of J-PARC RF negative ion source”,
5th International Symposium on Negative lons, Beams and Sources, 12 — 16 Sep. 2016, Oxford, UK.



H- beam production from RF-driven ion source
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Time variation of spatially averaged plasma density
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[1] T. Shibata, et al., “High density plasma calculation of J-PARC RF negative ion source”,
5th International Symposium on Negative lons, Beams and Sources, 12 — 16 Sep. 2016, Oxford, UK.



APPENDIX: Time Structure of Balmer line emission
observed in Linac4 RF H- source

ljH- mode plasma (steady-state) |
14 MHz line intensity oscillation |

T soomvidiv]  S00mVidivl 200 mvidi]
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[1] J. Lettry, et al., Rev. Sci. Instrum. 85, 02B122 (2014).
[2] T. Shibata, et al., AIP Conf. Proc. 1655, 020008 (2015).
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density (m'3)

Electron loss takes place at peaks of antenna current
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Electron loss takes place at peaks of antenna current
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Proton (H*) and H,* flows toward Plasma Electrode (cesiated surface)

: + +
Four processes for H* and H,* flux (1) Production of H* and H, (2) Transport of H* and H,*
production (seen in the calculation) above RF antenna coil along inductive B, field
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Characteristic values for H* diffusion perpendicular to B field

Cyclotron frequency:
w; = qB/my, ~ 4.8 x 10°s71,

Collision frequency for elastic/CX collision:
Veoll = NH20total Vthermal ~ (3 X 109 m3) x (102 m?) x (4 x 10° m/s) ~ 10° s’?

Diffusion Coefficient perpendicular to B field:

_ D - 2 2.—1
D, = (v w22 4.2 X 10 m“s™-,

where D = —BTH+ 4 T,,~10%-103eV
MHu+Vcoll

When protons are transported along field line by convection for x = 100 mm

(distance between H* production point to vicinity of filter magnet), . ——
characteristic time is given as 0o H+?[imo 00 10
x mm
T=—~10"%s
Vthermal

Characteristic length of H* diffusion from original field line is estimated to be
D, t=98x%x10"3~1 cm.

(4) Diffusion perpendicular to field line

Proton density (m-3)

' - 1010
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1077
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1015



Summary

Operation status of J-PARC RF H- ion source in this 2 years is shown.

Due to several dedicated efforts, improvement of beam performance has been achieved;
* 1-MW equivalent proton beam intensity was demonstrated at 3-GeV Synchrotron.
* Maximum beam current in the user operation is increased from 33 mA to 45 mA.
* Continuous operation of 1,350 hours is achieved for 45 mA beam current operation.

The spark rate in the ion source extractor was decreased successfully by controlling Cs injection
amount via three-stage Feed Back system.

The Feed Back system has been also effective for maintaining the fraction of H- current with in 0.1
mA in the 45 mA beam operation.

For the improvement of J-PARC ion source performance, several projects are started;
e Off-line R&D for high intensity study
* Development of numerical model for understandings of plasma behavior and for obtaining hints on source design.
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Due to several dedicated efforts, improvement of beam performance has been achieved;
* 1-MW equivalent proton beam intensity was demonstrated at 3-GeV Synchrotron.
* Maximum beam current in the user operation is increased from 33 mA to 45 mA.
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APPENDIX :
Pre-Conditioning of plasma chamber

* |n order to reduce the duration of beam commissioning (to
obtain desired H- beam performance) after exchange of ion
source on J-PARC Linac, “pre-conditioning” of plasma
chamber is made off-line.

Pre-conditioning procedure

1. Cleaning plasma chamber (Stainless Steel) by ethanol and
alumina powder.

2. After assembling the chamber, vacuum drawing has been
done until gas pressure becomes lower than 1.5 x 10~ Pa.

3. Atthe same time, short duration of low RF power
discharge (input power 25 kW) is repeated to evacuate
impurity gas.

4. After reaching low gas pressure, cesium is injected to
obtain target H- beam current.

5. The “pre-cesiated” chamber is filled with Ar gas for storage.

[1] A. Ueno, et al., Rev. Sci. Instrum. 87, 02B129 (2016).
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APPENDIX:
Manufacture of Original Antenna Coll

* InJ-PARC, manufacture of original antenna coil
was started in 2015.

* In the first campaign, 20 prototypes of the coil are
produced. Enamel coating of the coils contain high
ingredient amount of antimony emulation glass in
order to prevent cracks and pinholes which may
take place during manufacture. \ - Quadrupole.. eeoil . Quartz window

mass detector. N> = /

. . . lon source J iy ¥ /
* For testing the original antenna, development of . R A7 AN

17
test-bench is started. The performance of antenna; R e
* Impurity-gas evacuation during discharge
e Lifetime of antenna coil
will be investigated.

[1] K. Ohkoshi, et al., proceedings of 12t Annual Meeting of Particle Accelerator Society of Japan, 2016.
[2] A. Takagi, H. Asano, private communication.



APPENDIX : Antenna Coil Screening

Exposure of the
conducting wire (Cu)

Diameter : 1.2mm
Depth : 0.6mm

[1] A. Takagi, private communication.
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APPENDIX : Feed back system
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FIGURE 3. The equivalent circuits (bottom figures) for pulsed 2MHz-RF matching networks including
the 1solation transformer with (a) and without (b) hydrogen plasma and each simulated result (top
graph) , in which the amplitude and phase of the S11 parameter are shown as plots(1) and (2),
respectively, by using LTspice IV.

[1] A. Ueno, et al., AIP Conf. Proc. 1515, 409 (2013).



APPENDIX : Calculation Resource

@system-A : Hitachi Super Technical Server X

SR16000 model M1

” :gég; " et
: : . SO
Parallel calculation with 64 core CPU, 256 GB memory | §%ff; it -
server in 1 node (56 nodes total) | a3

Processor : POWER7 (3.83 GHz)
Estimated operation speed per node : 980.48 GFlops

Parallelization : SMP parallelization among 64cores,
MPI parallelization among 64 nodes
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Assembling of Test-stand

* In spring of 2016, Test-stand which has almost the same construction of lon source — LEBT system as in J-PARC
LINAC, has been assembled.

* The test-stand is equipped with two Faraday Cups in the center of LEBT and at the end of LEBT, which
corresponds to RFQ vane in actual LINAC configuration. Also at RFQ, vane position, Emittance Monitor in
horizontal and vertical directions is installed.

* At the test-stand, relation between beam transport and IS discharging condition is investigated. In the figure,
emittance diagrams for 40 mA beam are measured with different Cs injection amount and 2MHz RF power.
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Assembling of Test-stand

In spring of 2016, Test-stand which has almost the same
construction of lon source — LEBT system as in J-PARC
LINAC, has been assembled.

The test-stand is equipped with two Faraday Cups in the
center of LEBT and at the end of LEBT, which corresponds
to RFQ vane in actual LINAC configuration. Also at RFQ
vane position, Emittance Monitor in horizontal and
vertical directions is installed.

Study of operation with H- current up to 70 mA can be
performed from ion source in the test-stand.

At the test-stand, (i) establishment of beam commissioning
technique for high beam current is one of the targets. Also,
(ii) understanding of beam transport and emittance
diagram at RFQ vane is investigated in high H- current
condition.
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APPENDIX : Characteristic values for H* diffusion perpendicular to B field

Cyclotron frequency:
w; = qB/my, ~ 4.8 x 10°s71,

Collision frequency for elastic/CX collision:
Veoll = NH20total Vthermal ~ (3 X 109 m3) x (102 m?) x (4 x 10° m/s) ~ 10° s’?

Diffusion Coefficient perpendicular to B field: (4) Diffusion perpendicular to field line
D ) Proton density (m3)

D, = ~ 42 x10%>m?s~ ! |
(i) ’ 107

kgT 8
where D = ——*—and T,,, ~ 103 eV 1018

mpy+Veoll
1017
When protons are transported along field line by convection for x = 100 mm 1016
(distance between H* production point to vicinity of filter magnet), ‘ e B Lot
o . o . . [
characteristic time is given as S
x mm
T=—~10"%s
Vthermal

Characteristic length of H* diffusion from original field line is estimated to be
D, t=98x%x10"3~1 cm.




J-PARC Accelerator Complex and Application of proton beam
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