
Preparation for summer school

The course Fundamentals of Accelerator Technology gives an introduction
to the technology of modern accelerators. This text is a preparation for
the course. Go back to your physics books if you need a more detailed
description of a section.

The particles in accelerators travel with speeds close to the speed of light
and one needs the theory of special relativity to describe their motion. It is
not required that you know special relativity when you come to the course.
We will explain the parts that you need, but you can prepare yourself by
reading the short section below.

The section on magnetic multipoles is new for most of you. Just read
this part and try to understand the concepts of dipole, quadrupole and
sextupole.

The Lorentz force

In accelerators the charged particles are accelerated by the Lorentz force.
This force is the sum of the electric and magnetic force on a charge q that
travels with velocity v in a region with electric field E and magnetic flux
density B

F = q(E + v ×B). (1)

Since the magnetic force, qv ×B, is perpendicular to v, it can only change
the direction of v, but not the speed v = |v|.

Quiz: In a region the magnetic flux density is B = B0(0.8, 0.6, 0), where
B0 = 1.20 T, and the electric field is E = E0(0, 0, 1), where E0 = 2.00
MV/m. Determine the force F on a proton that travels with velocity v =
v0(0, 0, 1) through the region, where v0 = 0.70c. Here c is the speed of light
in vacuum.

Answer: F = qB0v0(−0.6, 0.8, 0) + qE0(0, 0, 1) where qv0B0 = 4.05 · 10−11

N and qE0 = 3.22 · 10−13 N.

The Maxwell equations

The time domain Maxwell equations are

∇×E = −∂B
∂t

∇×H = J +
∂D

∂t
∇ ·D = ρ

∇ ·B = 0,

(2)
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where J is the current density of free charges, ρ is the free space charge den-
sity, E is the electric field, D is the electric flux density, H is the magnetic
field and B is the magnetic flux density. In order to solve the equations one
needs constitutive relations between D and E and between B and H. In
vacuum these relations are

D = ε0E

B = µ0H,
(3)

where ε0 is the permittivity of vaccum and µ0 the permeablity of vacuum.

RF-waves

Radio frequency waves (RF waves) are time harmonic electromagnetic waves
with frequenćıes in the range 30 kHz-300 GHz. In accelerators it is common
to use RF waves in the frequency range 100 MHz-10 GHz. Another common
name for these waves is microwaves. Since RF waves oscillate with a fixed
frequency it is convenient to represent them with complex fields E(r), D(r),
H(r), B(r), current density J(r) and charge density ρ(r). The complex
fields are related to the real time-dependent physical fields via the transfor-
mation E(r, t) = Re{E(r)e−iωt}. In vacuum the Maxwell equations for the
complex fields are

∇×E(r) = iωB(r)

∇×B(r) = µ0J(r)− i
ω

c2
E(r)

∇ ·E(r) =
1

ε0
ρ(r)

∇ ·B(r) = 0,

(4)

where c is the speed of light in vacuum (299 792 458 m/s≈ 3 · 108 m/s).
In addition to these equations one needs boundary conditions to solve the
equations. The waves described in the course are traveling inside pipes and
cavities with metallic walls. A good enough approximation is that these
walls are perfectly conducting and on them the tangential component of the
electric field is zero. For a metal surface S with unit normal n, the boundary
condition then reads

n̂×E(r) = 0, r ∈ S. (5)

Example:

A plane wave that is linearly polarized in the x−direction and propagates in
the positive z−direction in a region with vacuum has the complex electric
field

E = E0e
ikzx̂.
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The magnetic field is given by the plane wave rule H = η−10 ẑ × E, where
η0 =

√
µ0/ε0 is the free space wave impedance. Thus

H = η−10 E0e
ikzŷ.

Applying the rule E(r, t) = Re{E(r)e−iωt}, the time domain fields are

E(r, t) = E0 cos(ωt− kz)x̂
H(r, t) = η−10 E0 cos(ωt− kz)ŷ.

Electrostatics

In the static case all time derivatives in the Maxwell equations are zero and
the electric and magnetic fields decouple. We use the same notation for the
static fields as for the complex fields, E(r) and H(r). Often there is no
risk for confusion. The static electric field in vacuum is given by the two
equations

∇×E = 0

∇ ·E =
1

ε0
ρ.

(6)

We can introduce the scalar electric potential ΦE as E = −∇ΦE, where ΦE

satisfies Poissons equation

∇2ΦE = − 1

ε0
ρ. (7)

In accelerator technology the electrostatic fields are less important than the
magnetostatic fields.

Magnetostatics

The static magnetic field H and magnetic flux density B satisfy

∇×H = J

∇ ·B = 0.
(8)

In a source free region, where J = 0, we can introduce the scalar magnetic
potential ΦM as B = −∇ΦM and solve Laplace equation ∇2ΦM = 0. The
second alternative, which is more common and general, is to introduce the
magnetic vector potential A as B = ∇×A. This can be used also in regions
where J 6= 0. Then ∇× (∇×A) = µ0J . By enforcing ∇ ·A = 0 and using
∇× (∇×A) = ∇(∇ ·A)−∇2A, the equation for A follows

∇2A = −µ0J . (9)
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There is also a third alternative to find H, and that is to use Ampère’s law
in integral form ∮

C
H · d` =

∫
S
J · n̂dS, (10)

where C is a closed curve that spans the surface S. The direction of the unit
normal vector n̂ to S is related to the direction of the curve C via the right
hand rule.

Magnetic circuits

The particles are guided along prescribed trajectories by static magnetic
fields. These fields are either generated by permanent magnets or by mag-
netic circuits that consists of iron cores and coils. We now describe how one
can produce a magnetic dipole field, which is a constant magnetic field. It
is used for bending the beam of particles.

I

C

d

Consider the circuit in the figure. The grey part is iron and the white
is air, or vacuum. The air gap d is small. We assume that the permeability
of the iron is very large and that the leakage of magnetic flux is negligible.
Ampère’s law (10) gives

NI =

∮
C
H · d`, (11)

where C is the closed curve in the figure, N the number of windings in the
coil, and I the current. The normal component of the magnetic flux density
B is always continuous over a surface. Thus it is approximately the same

magnetic flux inside the iron and in the air gap. Since H =
1

µ0µr
B in the

iron and H =
1

µ0
B in air, it means that the magnetic field is approximately

µr times stronger in the air gap than in the iron. The integral over the part
of C that is in the iron is neglected since µr � 1. The magnetic flux density
is approximately constant in the air gap and directed along C. From this
we get the magnetic flux density in the air gap

B =
NI

dµ0
ŷ, (12)

where the unit vector ŷ is is directed downwards.
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Special theory of relativity

According to the special theory of relativity, a number of physical quantities
have different values when they are measured in two systems that move with
constant velocity relative each other. Time, length, impulse, the electric
field, the magnetic field, and charge density are examples of such quantities.
This is a consequence of that the speed of light has the same value for all
systems.

Consider a system S and a system S′. An observer in system S sees
system S′ move with constant velocity v. The observer in system S′ has a
rod of length `0 that is directed parallell with v and he also brings a clock.
The observer in system S sees the rod pass by and measures its length to `.
He also measures the time T it takes for the clock in S′ to run a time T0.
He finds

` =
`0
γ

T = γT0,

(13)

where

γ =
1√

1− (v/c)2
. (14)

It means that seen from S the rod becomes shorter by a factor of γ−1 and
the clock in S′ is seen to run slower by the same factor.

If the observer in S′ rotates the rod so that it is perpendicular to v,
then both observers will measure the same length `0 of the rod. Quantities
that have the same value in the two systems are said to be invariant under
the transformation between the systems. Charge and the speed of light are
invariant. Also the laws of physics, like the Maxwell equations, are invariant.

Transformation of fields

Now assume that the two observers also measure the electric and magnetic
fields in their systems. The observer in S measures the electric field E =
E⊥ + E‖ and the magnetic flux density B = B⊥ + B‖, where E⊥ is the
electric field perpendicular to v and E‖ is the electric field parallell to v.
Then the fields measured by the observer in system S′ are


E′⊥ = γ(E⊥ + v ×B)

E′‖ = E‖

B′⊥ = γ(B⊥ −
1

c2
v ×E)

B′‖ = B‖.

(15)
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It means that the electric and magnetic field components parallell to the
velocity v are invariant whereas the components perpendicular to v are not.
Equation (15) is the transformation of the electromagnetic fields from the
system S to the system S′.

Quiz: Obviously the observer in S′ sees system S traveling with velocity
−v relative S′. It must then be that the transformation from S′ to S is:

E⊥ = γ(E′⊥ − v ×B′)
E‖ = E′‖

B⊥ = γ(B′⊥ +
1

c2
v ×E′)

B‖ = B′‖.

(16)

Consider the case when B = B0x̂, E = 0 and v = vẑ. Insert this into (15)
to get B′ and E′. Then insert B′ and E′ into (16) and check that you get
back B = B0x̂ and E = 0.

Quiz: The length of the linear accelerator (LINAC) in MAXIV is L = 340
m. When the electrons exit the LINAC and enter the storage ring, they
move with the speed v = 0.999999985c.

a) What is the length L′ of the LINAC when measured by an observer in a
system S′ traveling with the speed v = 0.999999985c along the LINAC?

b) The observer brings a clock and measures the time T0 it takes for him to
travel along the LINAC. What is this time?

c) An observer that is at a fixed position relative the LINAC measures the
time T it takes for S′ to travel along the LINAC. What is this time? Check
that it is related to T0 as in (13).

Answer: a) L′ = 5.9 cm.

b) T0 = L′/v = 1.96 · 10−10 s

c) T = L/v = 1.13 · 10−6 s. This is the same as γT0

Equation of motion

A particle with rest mass m0 that moves with velocity v relative an observer
has the impulse

p = γm0v. (17)

When the force on the particle is F , the equation of motion is

dp(t)

dt
= F . (18)
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Notice that γ depends on time since v is time dependent.

Circular motion of a charge in a constant magnetic field

Assume a region with constant magnetic flux density B = B0ẑ and no
electric field. A particle with charge q and mass m0 travels with velocity
v = vx(t)x̂+vy(t)ŷ in the region. The speed of the particle is constant since
the electric field is zero. The magnetic field is perpendicular to the velocity
and hence q|v×B| is constant. The particle then moves in a circle. We can
find the radius R of the circle by solving the equation of motion. This is
the same solution that is given in the basic courses in mechanics. The only
difference is that the mass m0 is exchanged for γm0. A simpler way is to
say that the centrifugal force γm0v

2/R is equal to the magnetic force qvB0,
where v = |v|. Then the radius is

R =
γm0v

qB0
. (19)

It takes a time T = 2πR/v for the particle to travel one lap in the circle.

The angular frequency for the particle is ω =
2π

T
and then

ω =
qB0

γm0
. (20)

It is somewhat more complicated to solve the equation of motion. We
need initial conditions in order to get the unique solution for the path of the
particle. We let these conditions be that the particle passes the origin with
speed v(0) = v(1, 0, 0) at time t = 0.

The magnetic force is

F = qv ×B = q(vy(t)x̂− vx(t)ŷ)B0. (21)

Since v is constant, the equation of motion gives

γm0

(
dvx(t)

dt
x̂+

dvy(t)

dt
ŷ

)
= q(vy(t)x̂− vx(t)ŷ)B0. (22)

From this we get two coupled equations

γm0
dvx(t)

dt
= qvy(t)B0

γm0
dvyyt)

dt
= −qvx(t)B0.

(23)

Elimination of vy gives the equation for vx and elimination of vx the equation
for vy:

d2vx(t)

dt2
+

(
qB0

γm0

)2

vx(t) = 0

d2vy(t)

dt2
+

(
qB0

γm0

)2

vy(t) = 0.

(24)
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The solution that satisfies the initial condition v(0) = v(1, 0, 0) is

v(t) = v(cos(ωt)x̂+ sin(ωt)ŷ), (25)

where ω =
qB0

γm0
. The equation of the circle is obtained from an integration

of (25) and the initial condition r(0) = (0, 0, 0):

r(t) =
v

ω
(sin(ωt)x̂− (cos(ωt)− 1)ŷ) . (26)

The radius of the circle is R =
v

ω
=
γm0v

qB0
, as we already seen in (19).

Quiz Assume an electron traveling with speed v = 0.999999985c in a
region with constant magnetic flux density B = B0ẑ. The velocity of the
electron is perpendicular to B. Determine B0 if the radius of the electron’s
orbit is 84 m.

Answer: B0 = 0.117 T. The speed and the radius are the ones used in
the MAX IV storage ring. In reality the orbit is not circular but consists of
20 bends and 20 straight sections. It means that the magnetic flux density
in the bends is stronger than B0.

Electron volt

The kinetic energies of charged particles are measured in electron volt (eV).
One electron volt is the energy an elementary charge gains when it is ac-
celerated by a voltage of one volt. By that 1eV=1.609 · 10−19 J. According
to special relativity the total energy of a mass m0 traveling with speed v is
W = γm0c

2. The kinetic energy is the total energy minus the energy of the
mass when it is at rest

Wkin = γm0c
2 −m0c

2. (27)

Quiz: The electrons in the MAX IV storage ring have an energy of 3 GeV.
What is β = v/c, where v is the speed of the electrons?

Answer: 0.999999985

Quiz: The protons in the ESS accelerator will have an energy of 3 GeV
when they hit the target. What is β = v/c, where v is the speed of the
protons?

Answer: 0.95

Multipole expansions of the magnetic field

Along an accelerator there are several regions with magnetic fields where the
beam of particles is focused or bent. These regions can often be considered
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to be two-dimensional, since the magnetic field is almost constant along the
beam in each region. Assume a two-dimensional region with vacuum around
the beam. Since there are no currents, Ampère’s law says that ∇×B = 0.
In that region we may express B in terms of the scalar magnetic potential
ΦM

B(x, y) = −∇ΦM(x, y). (28)

Since ∇ · B = 0 it follows that the scalar magnetic potential satisfies the
Laplace equation

∇2ΦM(x, y) = 0. (29)

We now use polar coordinates ρ, ϕ where ρ =
√
x2 + y2 and ϕ is the az-

imuthal angle measured from the x−axis. The general solution to Laplace
equation is obtained by the method of separation of variables. This standard
method gives

ΦM(ρ, ϕ) = α0 +
∞∑
n=1

ρn(αn cosnϕ+ βn sinnϕ), (30)

where αn and βn are constants.
The two terms proportional to ρ are dipole terms, the two proportional

to ρ2 are quadrupoles, the two proportional to ρ3 are sextupoles, and so on.
In accelerators the dipole fields are used for bending the beam of particles,
quadrupoles to focus the beam, and sextupoles to further correct the cross
section of the beam.

The magnetic flux density is given by B = −∇ΦM, which in polar coor-
dinates reads

B(ρ, ϕ) = −∂ΦM(ρ, ϕ)

∂ρ
ρ̂− 1

ρ

∂ΦM(ρ, ϕ)

∂ϕ
ϕ̂. (31)

This gives

B(ρ, φ) = −nρn−1 ((αn cosnϕ+ βn sinnϕ)ρ̂− (αn sinnϕ− βn cosnϕ)ϕ̂) .
(32)

The magnetic field of a dipole (n = 1) is a constant vector, the magnetic
field of a quadrupole (n = 2) is proportional to ρ, the magnetic field of a
sextupole (n = 3) is proportional to ρ2, and so on.

Example:

We can express the lowest order multipoles in terms of the cartesian coor-
dinates. For the dipole, n = 1, we get

ρ cosϕ = x

ρ sinϕ = y.
(33)
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and from that and (30) the dipole magnetic flux density is

B1(x, y) = −∇ΦM = −α1x̂− β1ŷ. (34)

This field is a constant vector in space. In the figure below a magnetic
circuit with two magnetic poles, that generates the dipole field for α1 = 0
and β1 6= 0 is shown.

I

B

For the quadrupole, n = 2, we have

ρ2 cos 2ϕ = ρ2(cos2 ϕ− sin2 ϕ) = x2 − y2

ρ2 sin 2ϕ = 2ρ2 cosϕ sinϕ = 2xy.
(35)

The magnetic flux density is

B2(x, y) = 2α2(yŷ − xx̂)− 2β2(yx̂+ xŷ). (36)

In the figure below the quadrupole for α2 6= 0 and β2 = 0 is shown. It is
generated by four iron cores with coils (four magnetic poles). On the curved
surface of an iron core the potential is constant. That gives the shape of the
surface as ρ = const/ cos 2φ on two opposite surfaces and ρ = −const/ cos 2φ
on the other two. The case α2 = 0 and β2 6= 0 gives the same field but
rotated 45◦.

y

a

1

4 2
x

3

10



For the sextupole, n = 3, we get

ρ3 cos 3ϕ = ρ3(cos 2ϕ cosϕ− sin 2ϕ sinϕ) = x3 − 3xy2

ρ3 sin 3ϕ = ρ3(sin 2ϕ cosϕ+ cos 2ϕ sinϕ) = 3x2y − y3.
(37)

The magnetic flux density is

B3(x, y) = −3α3

(
(x2 − y2)x̂− 2xyŷ

)
− 3β3

(
2xyx̂+ (x2 − y2)ŷ

)
. (38)

The sextupole field can be generated by six magnetic poles, in the same
manner as the quadrupole.
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