

Nordic Particle Accelerator School 2015

Lund University, Sweden August 17-23, 2015

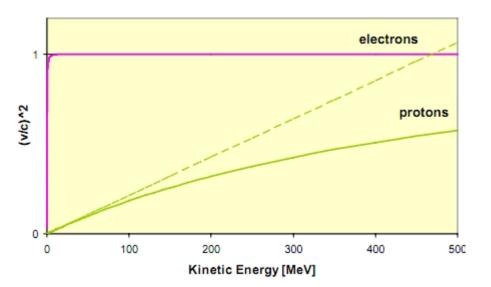
Accelerator Physics Introduction

Francesca Curbis Lund university/MAX IV laboratory

Outline

- Basic relations (units, kinetic energy, relativistic particles)
- Lorentz force&Maxwell's equations
- Different types of accelerators and electron guns
- Oscillating EM fields→linacs
- Circular accelerators
- Synchrotrons and phase stability
- Magnets (dipoles, quadrupoles, sextupoles) and focusing properties
- RF cavities and power lost per turn

Basic relations


- Electric charge: electron= -1, proton= +1... $e = 1.6 \cdot 10^{-19}C$
- Energy: electron volts (eV), 1 eV is the energy gained by an elementary charge when is accelerated by a voltage of 1 V.
 - We use: **keV=10³ eV**, **MeV=10⁶ eV**, **GeV=10⁹ eV**, TeV=10¹² eV
- The <u>total energy</u> of a particle is the sum of kinetic and rest energy: $W = W_0 + W_k$ where $W_0 = m_0 c^2$ electron $W_0 = 511 \text{ keV}$ proton $W_0 = 938 \text{ MeV}$
- $W = mc^2 = m_0 \gamma c^2$
- $W_k = W W_0 = m_0 \gamma c^2 m_0 c^2 = m_0 (\gamma 1)$

 $\beta = \sqrt{1 - \frac{1}{\gamma^2}}$ Lorentz factor $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{1}{\sqrt{1 - \beta^2}}$ $v = c\beta$ velocity

Relativistic particles

 $W_k >> W_0$ and $v \approx c$

Example for 1.5 GeV kinetic energy:

electrons, $\gamma = 2940$, $\beta = v/c = 0.99999942$

protons, $\gamma = 2.6$, $\beta = v/c = 0.923$

~5.1 MeV for e- and ~9.4 GeV for p to get relativistic

$$p = \gamma \beta m_0 c$$
$$E = mc^2 = \sqrt{p^2 c^2 + m_0^2 c^4}$$

Maxwell's equations

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \quad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \vec{B} = 0 \qquad \nabla \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho$$

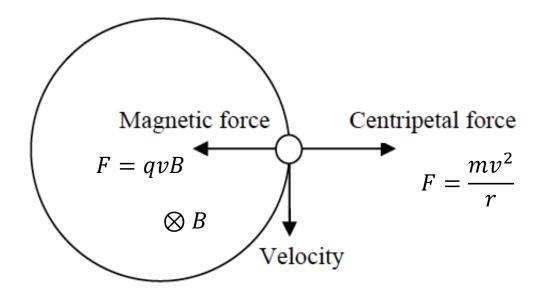
They describe the evolution of electromagnetic fields

Lorentz force

$$\overrightarrow{F_{\mathcal{L}}} = q\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)$$

$$\begin{cases} \frac{d}{dt}(\gamma m_0 \overrightarrow{v}) = q\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right) & \text{Acceleration and steering} \\ \frac{d}{dt}(\gamma m_0 c^2) = q \overrightarrow{v} \overrightarrow{E} & \text{Energy gain rate (or loss)} \end{cases}$$

- Bending: dipole magnets
- Focusing: quadrupole magnets
- Acceleration: electric field
 - the particles are accelerated, i.e., their kinetic energy increases= their momentum increases



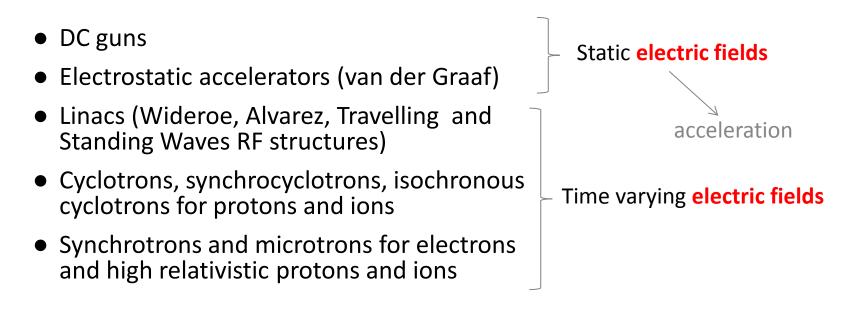
Circular motion

Static magnet No accelerating field Motion with radius r

$$\begin{cases} \vec{F} = \gamma m_0 \frac{d}{dt} (\vec{v}) = q \left(\vec{v} \times \vec{B} \right) \\ \frac{d}{dt} (\gamma) = 0 \end{cases}$$

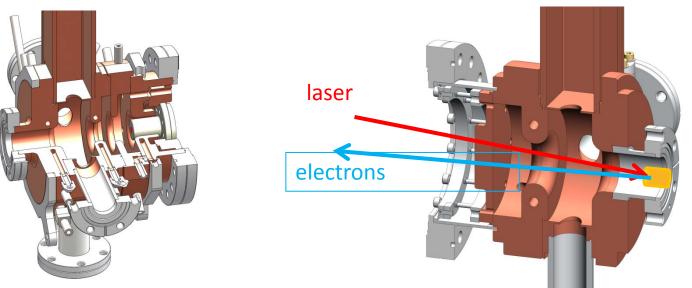
$$evB = \frac{mv^2}{r} \longrightarrow r = \frac{mv}{qB}$$

$$\frac{1}{r} = \frac{eB}{p} = \frac{ceB}{cp} = ce\frac{B}{E}$$
$$\frac{1}{r}[m] \approx 0.3\frac{B[T]}{E[GeV]}$$

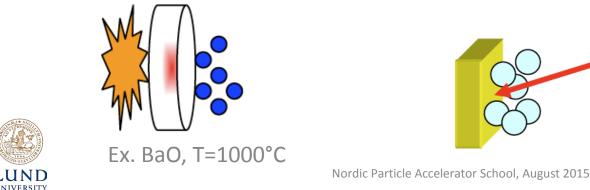

Examples:	В, Т	E, GeV	r, m
• -	1	4.5	15
	1.5	3	6.67
	2	27	45

Nordic Particle Accelerator School, August 2015

Accelerators zoo


Static magnetic or electric fields \rightarrow guidance/steering

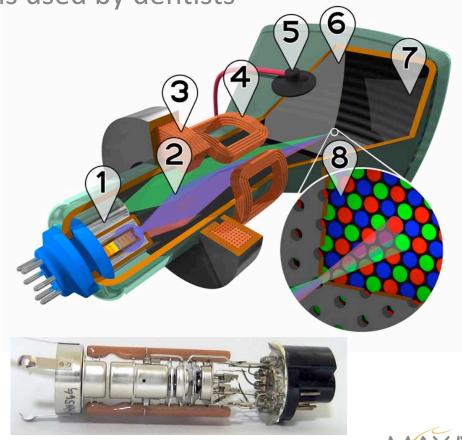
The Betatron is the exception where a time varying magnetic field gives an acceleration of electrons



Electrostatic accelerators and DC guns

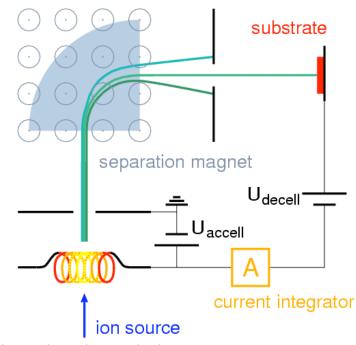
Free electrons can be created:

with a heat in a thermionic cathode or with a light pulse hitting a photocathode



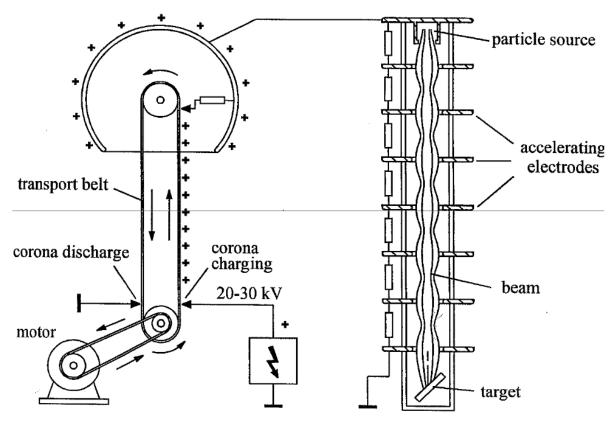
Static electric fields can accelerate

- Old cathode tube TV-sets is an electrostatic accelerator.
- The x-ray equipment that is used by dentists



Electrostatic accelerators- Ion implanters

- Ion implanters are used in the semiconductor industry to dope silicon wafers with ions.
- Ion implanters are also used for surface treatment of tools to make them more wear resistant.
- The energy of the ions is typically 10 to 500 keV.



Nordic Particle Accelerator School, August 2015

Van de Graaff accelerator

- Van de Graaff generator can reach 2 MV (up to 10MV with SF6)
- Charge from corona formation around a sharp electrode is transferred onto the belt
- Charge is collected on the dome

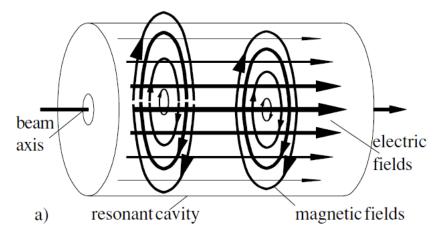
K.Wille 'The physics of Particle Accelerators'

Different versions exists which are called e.g. Pelletron, Laddertron and Tandem Accelerator

Electrostatic accelerators

- Maximum voltage is about 30 MV which gives a maximum energy of 30 MeV (eor prot.).
- Electrons becomes relativistic while protons and ions are far from being relativistic.
- Electrostatic accelerators are more common than accelerators using oscillating fields.

Cockroft-Walton accelerator

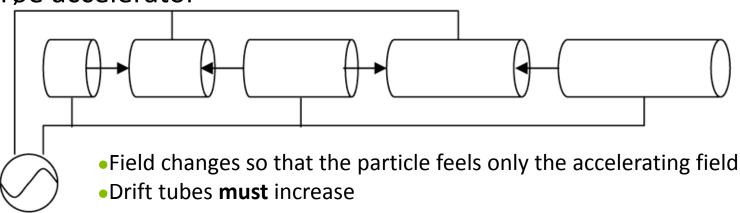


Oscillating electric fields

- Used to accelerate to high energies
- For higher frequencies, radio waves are trapped in RF cavities having a resonance frequency identical to the radio waves

1924: Gustaf Ising published
a concept for the linear
accelerator based on
oscillating electromagnetic
fields
1928: Rolf Widerøe
demonstrated it

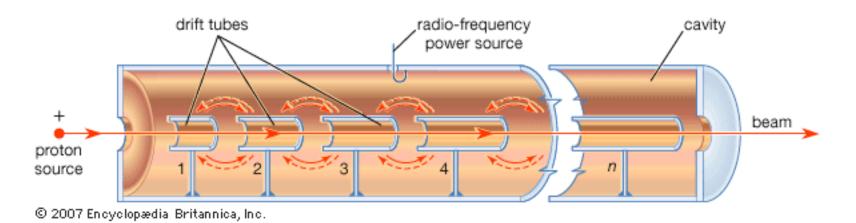
Linear accelerators(=<u>linac</u>) – one passage through the RF cavities


Circular accelerators – multiple passages through the RF cavities

Time varying electric field

- Static systems have voltage limitation
- Oscillating fields overcome this problem
- The acceleration is divided in steps
- One should take into account that the velocity increases during acceleration

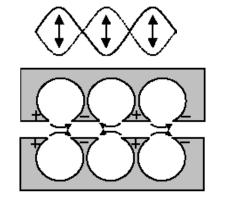
Widerøe accelerator

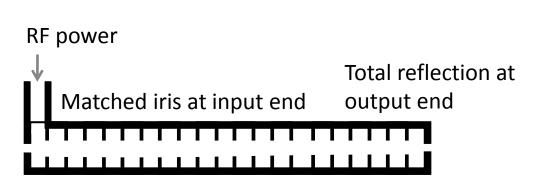


At high frequencies the Wideroe accelerator becomes a large emitter of RF power and becomes inefficient.

The Alvarez linac

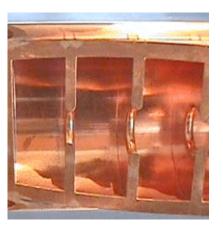
The accelerator is a large-diameter tube within which an electric field oscillates at a high radio frequency.

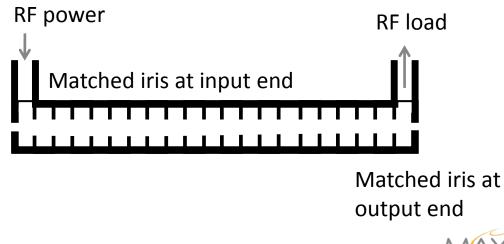

Within the accelerator tube are smaller diameter metallic drift tubes, which are carefully sized and spaced to **shield** the protons from decelerating oscillations of the electric field



Different types of linacs

Standing wave Used for ions and electrons at all energies



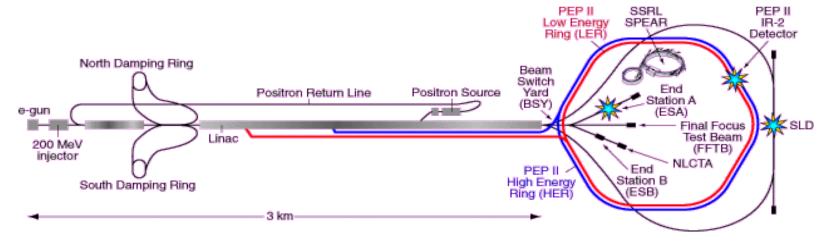


Traveling wave

UNIVERSITY

Used for relativistic electrons

Nordic Particle Accelerator School, August 2015


Linac based facilities

SLAC, San Francisco, California

- Particle physics
- Synchrotron Radiation with LCLS FEL

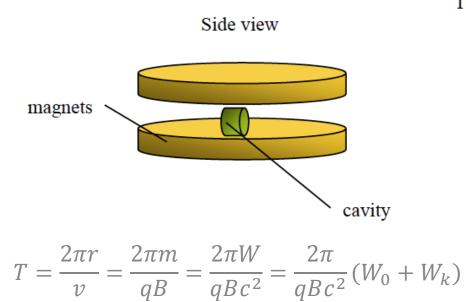
SLAC National Accelerator Laboratory

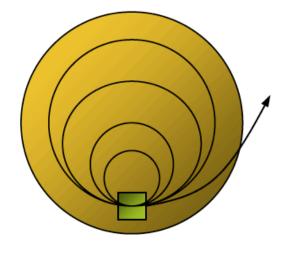
AC acceleration Coupling Accelerating Coupling to cavity cavity waveguide 77 KANA 77771111 TT

1932: E.O Lawrence patented a cyclotron: "method and apparatus for the acceleration of ions"

Circular accelerators

The cyclotron uses Newtonian, or non relativistic, relations for the revolution time. It works for $1 < \gamma < 1.05$.


The peak energy can be increased by having an RF frequency that varies like in the Synchrocyclotron or even better with a magnetic field that is stronger at larger radiuses like in the Isochronous Cyclotron.

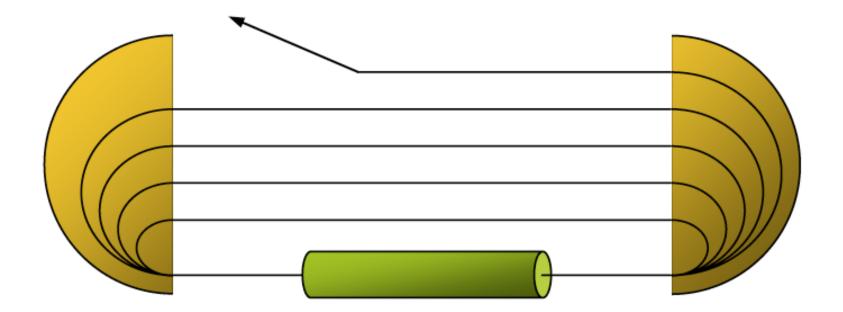


Top view with upper magnet removed

$$\Delta T = \frac{2\pi}{qBc^2} \Delta W$$
 Time difference between each revolution

Acceleration when
$$\Delta T = \frac{k}{f_{RF}}$$
, k integer

$$n\lambda = n\frac{c}{f} = nc\Delta T = nc\frac{2\pi}{qBc^2}$$



Possible to reach about 30 MeV

Nordic Particle Accelerator School, August 2015

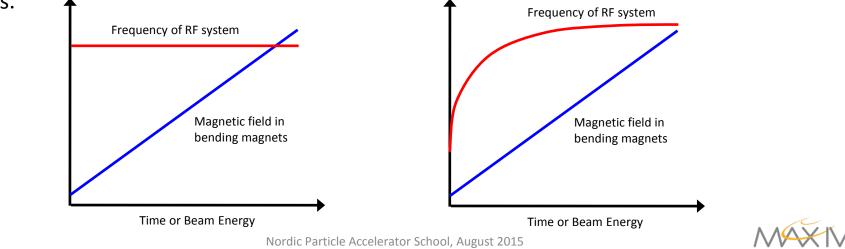
Racetrack microtron

Like a microtron but the two halves are split

up to 100MeV

Nordic Particle Accelerator School, August 2015

Synchrotron


The radius is constant while the magnetic field increases

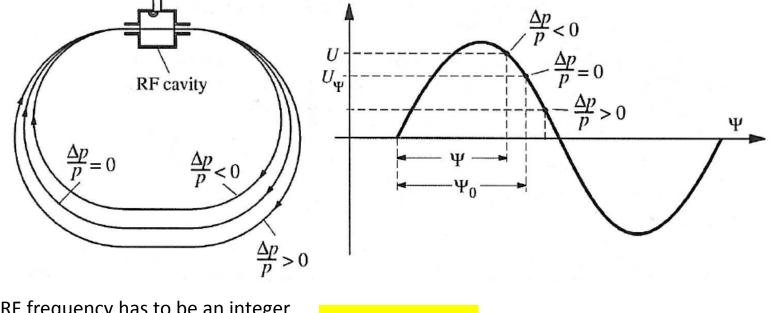
$$\frac{dr}{dt} = 0$$

$$\frac{dB}{dt} \neq 0$$

$$r = \frac{mv}{qB} = \frac{1}{qB}m_0\gamma c \sqrt{1 - \frac{1}{\gamma^2}} = \frac{1}{qBc}\sqrt{W^2 - W_0^2}$$

A change in the magnetic field gives a change of energy.

Frequency of RF is **constant** for electron and highly relativistic ion and proton beams.

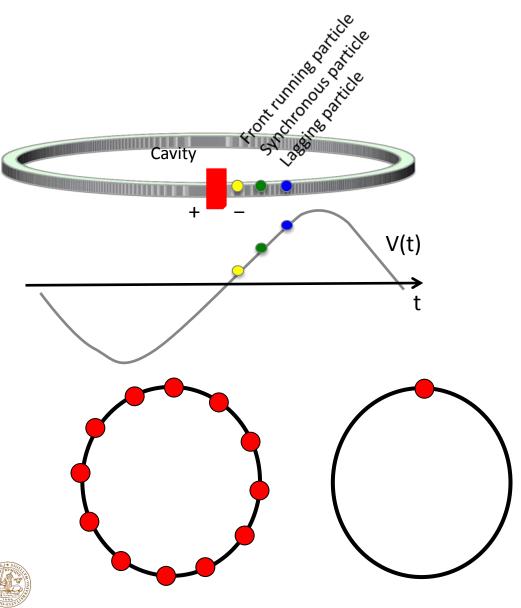

Frequency of RF is **variable** for booster rings for ion and proton beams since $v \neq c$ at start.

Phase stability and synchrotron frequency

The "phase stability" is the capture phenomena occurring around the synchronous particle

The RF frequency has to be an integer multiple of the revolution frequency

 $\omega_{RF} = h \omega_{rev}$ h: harmonic null


h: harmonic number of the ring

Phase focusing of relativistic particles in a circular accelerator. The particles will oscillate around the synchronous particle: Synchrotron oscillations. The frequency is typically a small fraction of the revolution frequency.

Time structure

The stored beam consists of a series of bunches. Distance between the bunches = wavelength of RF system Only a finite number of bunches possible Every "bucket" does not have to be filled, gaps possible

Nordic Particle Accelerator School, August 2015

Emission of radiation and Energy lost per turn

Power radiate by moving charge (Larmor formula)

$$P_{\gamma} = \frac{1}{6\pi\varepsilon_0} \frac{e^2 f^2}{c^3} \gamma^4$$

$$= \frac{v^2}{\rho} \text{ with } v \approx c \qquad \gamma^2 = \frac{E^2}{c^4 m_0^2}$$

$$r_{\rho} \text{ classical radius of the electron}$$

 $P_{\gamma} = \frac{2}{3} \frac{r_e c}{(m_0 c^2)^3} \frac{E^4}{\rho^2}$

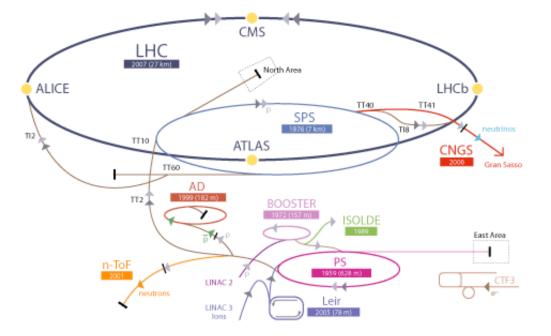
If B is constant, ρ is only a function of momentum

$$\frac{1}{\rho^2} = \frac{B^2 e^2}{p^2} = \frac{B^2 e^2 c^2}{(pc)^2} \approx \frac{B^2 e^2 c^2}{E^2} \qquad \qquad P_{\gamma} = \frac{2}{3} \frac{r_e e^2}{(m_0 c)^3} E^2 B^2$$

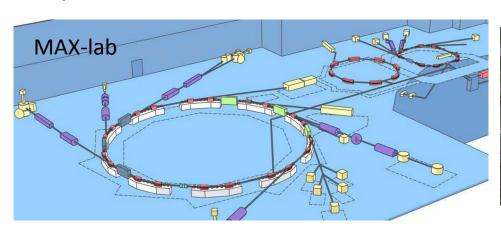
In order to provide the energy lost (i.e. the voltage required to keep the beam stored), one needs to calculate what is the energy radiated by a particle on each turn

Energy = power (P) × revolution time $(2\pi R/\beta c)$

$$U_0 = \frac{4\pi}{3} \frac{r_e}{(m_0 c^2)^3} \frac{E^4}{\rho^2}$$

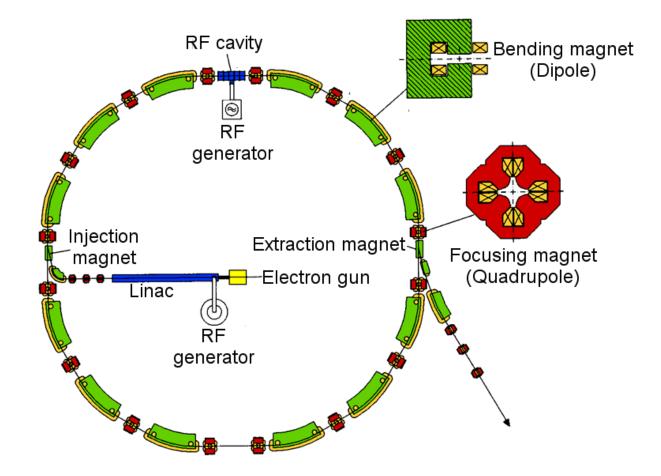


For electron machines above 100 GeV is not practical to scale energy and the radius linearly with the energy


CERN Accelerator Complex

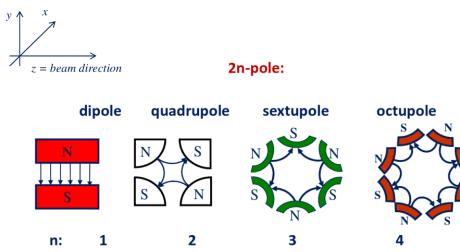
Large collider accelerators

MAX IV


Storage rings for Synchrotron Radiation production

LUND UNIVERSITY

Nordic Particle Accelerator School, August 2015

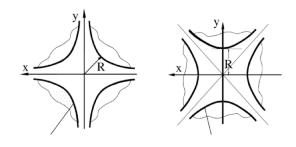

How does it look like a synchrotron?

Types of magnets

USPAS14, Fundamental Acc. Physics and Technology

$$B_{y}(x) = B_{y0} + \frac{dB_{y}}{dx}x + \frac{1}{2!}\frac{d^{2}B_{y}}{dx^{2}}x^{2} + \frac{1}{3!}\frac{d^{3}B_{y}}{dx^{3}}x^{3} + \dots$$

Linear optics (steering):


- dipoles
- quadrupoles

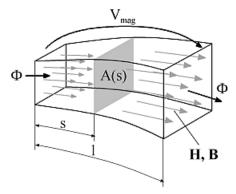
Higher order optics (compensation or errors):

•••

- sextupoles
- → octupoles

ElectromagnetsPermanent magnets

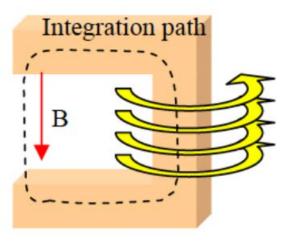
Normal: gap in hor. plane
Skew: rotate around beam axis by π/2n angle



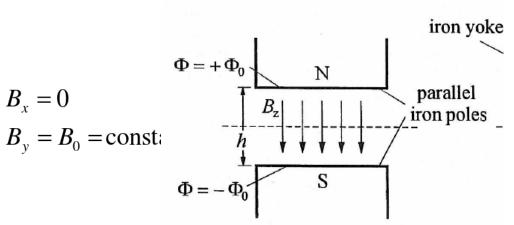
Recapitulation

 $\mu_0 = 4\pi^* 10^{-7}$ vacuum permeability

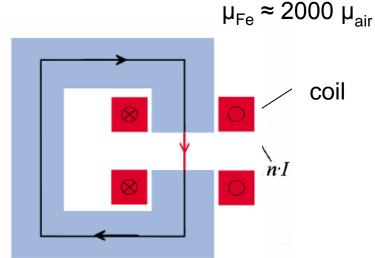
The permeability:	$\mu = \mu_r / \mu_0$	Vs/Am	vacuum $\mu_r = 1$ iron $\mu_r = 2000$
Magnetic flux:	Φ	Wb = Vs	• •
The magnetic flux density:	В	$T = Vs/m^2$	
The magnetic fields strength:	Н	A/m	


Magnetic flux:

Ampère's circuital law:


$$\oint \vec{H}d\vec{s} = \int \vec{j}d\vec{A} = nI$$

n – number of coil windings



Dipole magnet field

K.Wille 'The physics of Particle Accelerators'

Ampère's circuital law:

The magnetic flux density (B) at the two sides of the iron-air interface is constant:

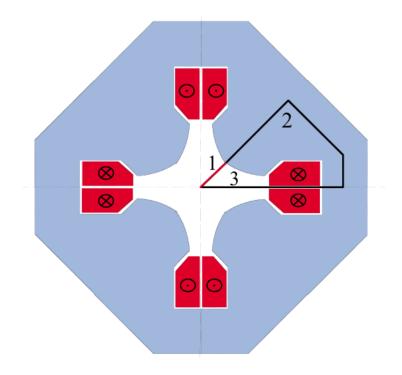
$$\oint Hds = hH_{gap} + lH_{Fe} = nI$$

$$H_{gap} \frac{\mu_{air}}{\mu_0} = H_{Fe} \frac{\mu_{Fe}}{\mu_0}$$

$$\oint Hds \approx hH_{gap} = h\frac{B}{\mu_0} = nI \Longrightarrow B = \frac{nI\mu_0}{h}$$

Quadrupole magnet field

Ampère's circuital law:


$$\oint \vec{H} d\vec{s} = \int_{1}^{1} \vec{H_1} d\vec{s} + \int_{2}^{1} \vec{H_2} d\vec{s} + \int_{3}^{1} \vec{H_3} d\vec{s} = nI$$
small
$$B_x = G y$$

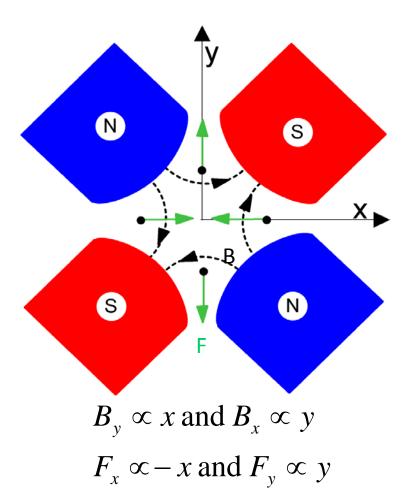
$$B_x = G y$$

$$G = \text{constant}$$

$$B_r = \sqrt{B_x^2 + B_y^2} = Gr$$

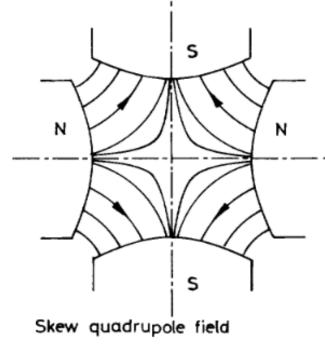
$$nI = \int_{1}^{1} H_1 ds = \frac{G}{\mu_0} \int r dr = \frac{Gr_0^2}{2\mu_0}$$

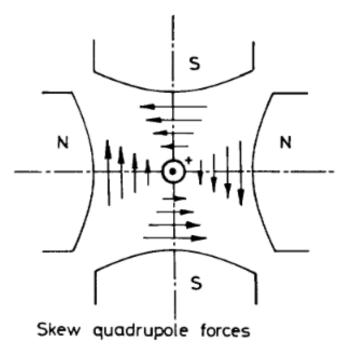
S. Russenschuck, DESIGN OF ACCELERATOR MAGNETS


$$G = \frac{2nI\mu_0}{r_0^2}$$

Field gradient

Quadrupole focusing



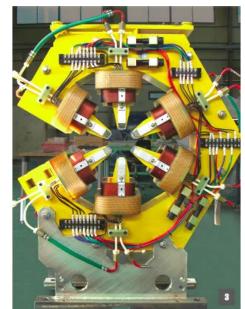

A quadrupole magnet will focus in one plane and defocus in the other!

Skew quarupoles

E.Wilson, LINEAR COUPLING

Introduces the coupling of horizontal and vertical motion

How they look like in real life



[http://www.stfc.ac.uk]

Quadrupole

Dipole and sextupole

Sextupole

K.R TECH

MAX III magnet blocks

Same technology is used in MAX IV

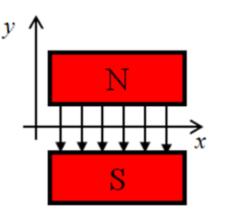
Properties

Dipoles : steering the beam

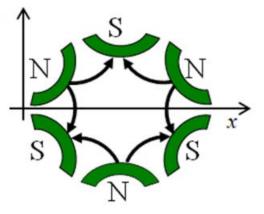
 $B_x = 0$ $B_y = B_0 = \text{constant}$

Quadrupoles: focusing

$$B_x = G y$$


$$B_y = G x$$

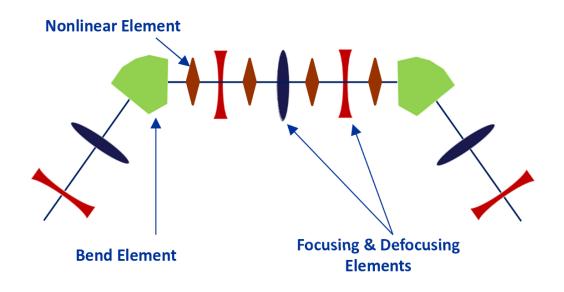
$$G = \text{constant}$$


Sextupole: chromatic correction and control of ^y nonlinear dynamics

$$B_{x} = 2S x y$$

$$B_{y} = S \left(x^{2} - y^{2}\right) \qquad S = \text{constant}$$

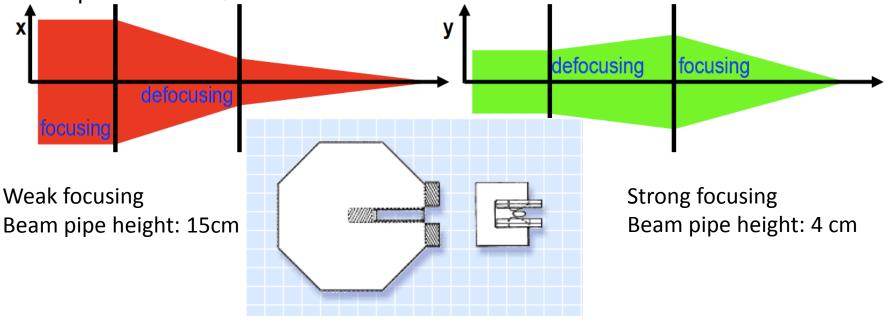
y N S N x



Particle steering tools

The particles should move on a ideal orbit The magnets bend the trajectory And focus the particles

The **lattice** is the arrangement of magnets that guides and focus the beam→beam optics (tomorrow)



Strong focusing

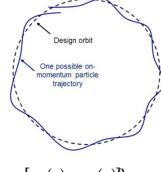
1952: Courant, Livingston, and Snyder: theory of strong focusing with discrete quadrupole magnets for the focusing and dipole magnets for the bending.

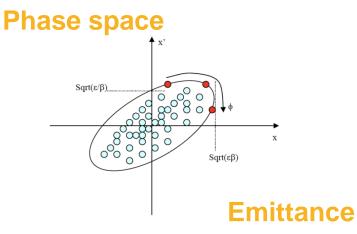
Two successive elements, one focusing the other defocusing, can focus in both planes:

Today: only strong focusing is used

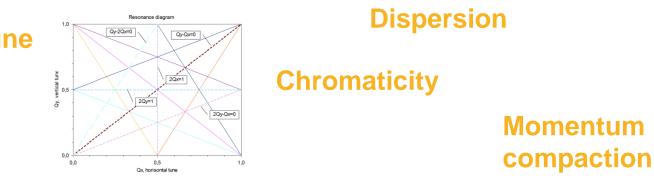
G. Hoffstaetter, Class Phys 488/688 Cornell University

Appetizer


Matrix notation


$$\begin{pmatrix} u(s) \\ u'(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{pmatrix} \begin{pmatrix} u(0) \\ u'(0) \end{pmatrix}$$

Hill's equations of linear particle motion


Betatron oscillations

$$u(s) = \sqrt{\varepsilon_u \beta_u} (s) \cos[\varphi_u(s) - \varphi_u(0)]$$

$$u'(s) = -\sqrt{\frac{\varepsilon_u}{\beta_u(s)}} \{\alpha_u(s) \cos[\varphi_u(s) - \varphi_u(0)] + \sin[\varphi_u(s) - \varphi_u(0)]$$

u = x, y

Nordic Particle Accelerator School, August 2015

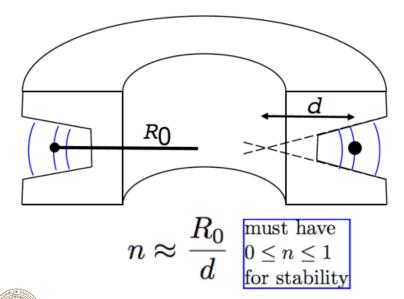
Tune

UND UNIVERSITY

Acknowledgements

The material used for this lecture comes from E. Wallén, S. Werin and Galina Skripka

Backup



Weak focusing

The Cosmotron: 3.3 GeV proton synchrotron at Brookhaven, New York (1952) Weight: 4000 tons Magnet aperture: 20 by 60 cm, internal beam pipe height: 15cm

"Minuses":

- Large beam
- Large vacuum chamber
- Large magnet aperture

Weak focusing accelerator

