

Status of the ESS MEBT FC

FC Team ESS-Bilbao Beam Instrumentation Group

October - 2016

Conceptual Design

.Mechanical Design

.Signal Conditioning

.EEE Integration & IOC

Conceptual Design

Mechanical Design

.Signal Conditioning

.EEE Integration & IOC

ESS MEBT

ESS MEBT FC

- Beam Instrumentation is required in order to characterize beam current, size, emittance, etc
- The Faraday Cup purpose is to stop a pulsed proton beam to measure the total beam current.
- Faraday Cup is irradiated in Fast and Slow tuning modes.

Parameter	V	alue
Proton Energy	3.63	MeV
Intensity	62.5	mA
Mode I: Fast Tuning	5 μs - 14	Hz - 16 W
Mode II: Slow Tuning	50 µs - 1	Hz - 11 W
Beam size	$\sigma_x \ \sigma_y$	2.48 mm 2.62 mm

FC Scheme

Conceptual Design

Mechanical Design

.Signal Conditioning

.EEE Integration & IOC

Repeller

• Beam dynamics studies* carried out to determine the effect of several geometric parameters on the FC repelling ability.

(*) Presented at the Beam Instrumentation Forum I (Lund, February 2016)

- Electrostatic field simulations made with Comsol, particle dynamics studies performed with GPT.
- Considerable effort to create an accurate secondary electron beam (beam footprint, collector angle, emission angle probability and energy distribution, etc).
- The video shows a typical simulation, observing the electron trajectories, impact position and recapture time.

Distance Collector-Repeller

Repeller Voltage

- Basic simulations indicate that we can achieve a 100% electron suppression in the Faraday Cup. Full recapture times typically take a few ns.
- A full recapture can also be achieved if the suppressor voltage is lowered down to 200 V, although the total capture time is obviously longer.
- The final design assumes:
 - Voltage: 1 kV
 - LCup: 10 mm
 - LRep: 10 mm
 - d: 4 mm

Thermomechanical effects

- Irradiation is highly concentrated in spots \sim mm and depths \sim 100 µm. • This leads to high temperatures and stresses during the transient (50 μ s).
- Graphite is in contact with refrigerated substrate to dissipate heat in the ٠ steady state. Gr

Parameter	Value
Proton Energy (MeV)	3.63
Beam Current (mA)	62.5
Pulse duration (µs)	50
Pulse Energy (J)	11
Peak Power (kW)	227
Beam Sigma (cm)	0.25
Beam Spot (cm ²)	0.4
Beam Current(mA/cm ²)	159
Beam Current(µC/cm ²)	8.0
Stopping Power (MeV/cm)	775
Energy Deposition (MW/cm ³)	123
Energy Deposition (kJ/cm ³)	6

Energy Deposition (kJ/cm³)

Transient

- High temperatures and stresses are attained during the pulse (50 μ s).
- A criterion $\sigma_{Max} \leq 2/3 \sigma_{Strength}$ is used.

Mat. Limit		Graphite
Melt 7	Melt Temp. (K)	
Ult. Tensile Strengt	Ult. Tensile Strength / Design Limit (MPa)	
Ult. Comp. Strength / Design Limit (MPa)		125 / 83
Case $I'' (\mu C/c$	$(2m^2) \left \Delta T(\mathbf{K}) \right \sigma_{Int} (\mathbf{MPa})$	$\sigma_{Int}/\sigma_{Lim}$

640

FC: 30° 4.0

51%

43

Stationary State

- Thermal contact between graphite/insulator/steel body.
- Cooled by water channels in the FC body
- Dependant on contact conductivity, roughness and microhardness
 - $h_c \cdot \frac{\sigma_c/m_c}{k_c} = 1.25 \cdot \left(\frac{P}{H_c}\right)^{0.95}$
 - Contact Pressure ~1 MPa, Force 500 N
- Stationary state is attained in ~300 s
- Low temperature gradient (<100 K)
- Low stresses (~1 MPa)
- Small Deformations (10-20 μm)

Steel - 500 N

Stationary State

- We choose a steel substrate for a more simple manufacturing.
- Steel dissipates heat correctly if good thermal contact is applied, Force~500N.
- Thermal Contact is only effective where contact pressure is applied.

Conceptual Design

Mechanical Design

.Signal Conditioning

.EEE Integration & IOC

Mechanical Design

Mechanical Design

Mechanical Design

Graphite Collector

Graphite plate with indented surface for better performance under irradiation.

Plate of 58 mm diameter, 4 mm thickness and 4.33 sawteeth height.

Sawteeth with angles of 30°

Main Dimensions

- Nominal Diam.: 50 mm
- Width: 46 mm
- Ext. Diam.: 70 mm
- Collimator Diam.: 48 mm
- Actuator Stroke: 80 mm

Conceptual Design

Mechanical Design

.Signal Conditioning

.EEE Integration & IOC

Design Parameters

Beam peak current	62.5 mA
Dynamic range	10
Beam mode 1	50 us & 1 Hz
Beam mode 2	10 us & 14 Hz
Sample frequency	>= 2 MHz
Total measurement error	< 0.1 mA
Measurement precision	σ < 0.01 mA
Output voltage range:	+/-10 V
ADC Resolution	16 bits
Remotely controlled power supply	0 to 1000V (negative)

General Scheme

Analogue Front End

Cabling and Conections

Power converters enclosure

Conceptual Design

Mechanical Design

.Signal Conditioning

.EEE Integration & IOC

HW Description

31

HW Description

Control Flow Diagram

.Conceptual Design

.Mechanical Design

.Signal Conditioning

.EEE Integration & IOC

Conclusions

- Conceptual Design
- Detailed Design
- Manufacturing
- Testing, Integration
 & Delivery

-I. Bustinduy
-D. de Cos
-C. de la Cruz
-A. Milla
-R. Miracoli
-T. Mora
-J. Ortega
-A. R. Páramo
-I. Rueda

Thank you for your attention