

EUROPEAN SPALLATION SOURCE

ESS FPGA development framework

with application to BI instrumentation

- FPGA introduction for dummies
- ESS platform
- ESS DEVENV for IKCs
- nBLM

- FPGA introduction for dummies
- ESS platform
- ESS DEVENV for IKCs
- nBLM

FPGA Architecture

EUROPEAN SPALLATION SOURCE

FPGA Architecture

Contemporary FPGA architectures incorporate the basic elements along with additional computational and data storage blocks that increase the computational density and efficiency of the device.

The combination of these elements provides the FPGA with the flexibility to implement any software algorithm running on a processor.

AUTERA.

Hardware Description Language -Introduction

- HDL is a language that describes the hardware of digital systems in a textual form.
- It resembles a programming language, but is specifically oriented to describing <u>HARDWARE STRUCTURES</u> and <u>BEHAVIORS</u>.
- The main difference with the traditional programming languages is HDL's representation of <u>extensive parallel</u> <u>operations</u> whereas traditional ones represents mostly serial operations.
- The most common use of a HDL is to provide an alternative to schematics.

- FPGA introduction for dummies
- ESS platform
- ESS DEVENV for IKCs
- nBLM

Beam Diagnostics

The Beam Diagnostics work package includes the development of all beam instrumentation for the ESS linac:

- BLM (Beam Loss Monitor)
- BCM (Beam Current Monitor)
- BPM (Beam Position Monitor)
- FC (Faraday Cup)
- WS (Wire Scanner)
- NPM (Non-Invasive Profile Monitor)
- EMU (Emittance Measurement Unit)
- LBM (Longitudinal Bunch Profile Monitor)

etc.....

Integrated Control System (ICS)

The ESS Control System is a complex network of hardware, software and configuration databases that integrates the operations of all the various parts of the Accelerator, Target, Instrument and Conventional Facility infrastructures.

ESS has a large network of laboratories to exchange knowledge, personnel and experience with, and that in many cases will contribute directly to the project through In-Kind Contributions (IKCs)

MTCA.4 AMC

FPGA comparison

- FPGA introduction for dummies
- ESS platform
- ESS DEVENV for IKCs
- nBLM

ICS Continuous Integration/Delivery

Courtesy of Leandro Fernandez JAVA flow

EUROPEAN SPALLATION SOURCE

FPGA design/delivery

http://semver.org/

MAJOR.MINOR.PATCH

- MAJOR version when you make incompatible API changes
- MINOR version when you add functionality in a backwards-compatible manner
- PATCH version when you make backwards-compatible bug fixes

ESS | ESS FPGA development framework | 2016-10-04 | Maurizio Donna

- FPGA introduction for dummies
- ESS platform
- ESS DEVENV for IKCs
- nBLM

BPI page mileston

Milestones

Key	Summary	т	Due	Status	Group	Domain	Description	Affected Version/S	Linked Issues
BB-269	Delivery for test at Saclay	۵	Oct 15, 2016 00:00	LATE	BD, ICS	PBI system	uTCA based system with DAMC-FMC25 AMC and AD9434 FMC needs to be delivered to CEA/Saclay by the 1st November 2016. Shipping is planned for 20 October 2016. Note that uTCA system can be delivered without the timing receiver due to the nature of the test.	nBLM prototype	
BB-268	nBLM test at Saclay	۵	Nov 01, 2016 00:00	TO DO	BD, ICS, IKC	PBI system	Test with backup solution AMC and FMC at CEA/Saclay shall be performed between 1 and 15 November 2016. Test results shall be presented at PDR on 1 December 2016.	nBLM prototype	
BB-234	Prototype platform available	۵	Sep 30, 2016 00:00	LATE	BD, ICS	PBI system	Prototype application specific PBI system development can commence.	nBLM prototype	
BB-233	CDR	۵		TO DO	BD, ICS, IKC	PBI system	Approve the final design, start procurement of electronics hardware for installation.	nBLM final	
BB-232	Installation 1	۵		TO DO	BD, ICS	PBI system	PBI system electronics are deployed in the gallery.	nBLM final	
BB-229	PDR	۵	Dec 01, 2016 00:00	TO DO	BI, ICS, IKC	PBI system	Decide on further activities leading to prototype system.	nBLM prototype	

EUROPEAN SPALLATION

SOURCE

nBLM test

The ESS-nBLM-500M is a custom application develop on top of the CAEN ELS DAMC-FMC25 carrier board. The board mounts two **Analog Devices AD9434** evaluation boards which provide one 500 MSPS, 12 bit channel each.

The following test equipment was used during the evaluation of ESS-nBLM-500M FPGA firmware:

- Schroff 7-slot MicroTCA.4 crate
- NAT-MCH-PHYS, NAT-MCH-RTM CPU board, NAT AC 600 Power Supply
- Operating system used: Debian GNU/Linux 8.6 (Jessie) with 3.16.0 kernel
- Tektronix AFG 3022B function generator

nBLM bitbucket

The used version of the FPGA firmware was 0.1.02, generated from the following commit in ESS-nBLM-500M repository

(<u>https://bitbucket.org/europeanspallationsource/ess-nblm-500m-software</u>) with *recreate_project.tcl* script with **Xilinx ISE 14.7**.

The software used to perform the test was obtained from **ESS-nBLM-500M-software** repository

(<u>https://bitbucket.org/europeanspallationsource/ess-nblm-500m-software</u>).

nBLM

This example assumes that there is a function generator attached to the input in the following configuration:

Value
Pulse
120 mVpp
30 ns
1 kHz

The maximum event frequency was determined to be 320 Hz when capturing 1us of data (500 samples) and 270 Hz when capturing 2us of data (1000 samples).

We suspect that the limiting factor is the plotting library [SW].

EUROPEAN SPALLATION SOURCE

