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Proton beam profile monitor @ ESS

MOTIVATIONS:

Perfect beam alignment in order to:

ã Maximize protons on target

ã Prevent beam losses j

⇓

REQUIREMENTS:

ã Must stand high proton beam intensity

ã Minimum impact on proton beam

⇓

IONIZATION PROFILE MONITORS
(1 in Spokes, 3 in Medium β, 1 in High β)
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PRINCIPLE OF OPERATION

Ionization Profile Monitors (IPMs)

FEASIBILITY STUDIES (F.S.):

ã Nb of ion/pairs per pulse?

ã Electric field uniformity (A. Vnuchenko)

ã Space charge effect
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F.S. (1/10): ion/electrons pairs expected

ESS PROTON BEAM PARAMETERS:
ã Energy : [90,2000] MeV

ã Current peak: 62.5 mA

ã Pulse length: 2.86 ms

ã Pulse frequency: 14 Hz (duty cycle 4%)

ã Bunch frequency: 352.21 MHz and 754.42 MHz

IPM GAS PARAMETERS:
ã Composition : H2 (79%), CO (10%), CO2 (10%), N2 (1%)

ã Pressure: 10−9 mbar

ã Mean Ion. Pot.: 35.65 eV
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F.S. (2/10): electric field uniformity

ELECTRIC FIELD INTENSITY CONSTRAINTS:
ã Below spark threshold

ã Avoid proton beam deviation

ã Avoid emittance growth

ã Uniformity needed on planes perpendicular to the electric field

ã ”Identity” needed among planes perpendicular to proton beam

SIMULATIONS OF THE ELECTRIC FIELD UNIFORMITY MADE BY A. VNUCHENKO
WITH COMSOL:

COMSOL Multiphysics is a platform for physics-based modelling and simulation tools for electrical, mechanical, fluid flow,
chemical and other applications.
A numerical technique (finite element method) is used to find approximate solutions to boundary value problems for partial
differential equations. FEM solvers generate an optimized mesh and calculate the potential value on it.

a. 2D MODEL OF A SINGLE IPM:

ã E = 10 kV/10 cm

ã Dimensions = 10 cm x 10 cm

ã Equally spaced field degrader

ã Beam tube radius = 250 mm
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F.S. (3/10): electric field uniformity
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F.S. (4/10): electric field uniformity

b. 3D MODEL OF A SINGLE IPM:
ã E = 30 kV/10 cm

ã Dimensions = 10 cm x 10 cm x 4 cm

ã 40 Equally spaced field degraders

ã y dimension of field degrader =
inter field degraders space

ã Additional curved electrodes

ã Beam pipe radius = 15 cm

VARIABLE TO CHECK ELECTRIC

FIELD UNIFORMITY:

(Electric field imposed

along the y axis)

σx =

√
Σ(Ex )2)

N
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F.S. (5/10): electric field uniformity

c. 3D MODEL OF A SINGLE IPM:
ã E ≥ 30 kV/10 cm

ã Dimensions = 10 cm x 10 cm x 10 cm

ã 40 Equally spaced field degraders

ã y dimension of field degrader = inter field degraders space

ã Additional curved electrodes

ã Beam pipe radius = 15 cm

For detectors
with larger
z the additional
curved
electrode
is not
necessary

OUTCOME
ã E = 30 kV/10 cm

ã Cages dimensions = 10 cm x 10.2 cm x 10.2 cm

ã 40 Equally spaced field degraders

ã y dimension of field degrader = inter field degraders space

ã No curved electrodes

ã Vaccum chamber length = 42.8 cm

ã Beam pipe radius = 12.2 cm

ã Distance between cages = 9 cm

ã Distance between chamber wall and first IPM = 12.6 cm

ã Distance between chamber wall and first IPM should
be increased to avoid spatks→Flange should be
moved (Unfortunately the VC PDR refused)

d. 3D MODEL OF 2 IPMs:
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F.S. (6/10): Space charge

REMINDER:

POSSIBLE CORRECTION METHODS
ã High electric field 3 7

ã Add magnetic field 7

ã Software correction 3

SOFTWARE CORRECTION

R. Wanzenberg, Nonlinear Motion of a Point Charge in the 3D Space Charge Field of a Gaussian Bunch.

A Gaussian bunch with total charge Qb is moving with the velocity vb along the z-axis of the laboratory frame K.
The electric field of the bunch is calculated in the comoving frame and transformed into an electric and magnetic field in the
laboratory frame K where the Lorentz-Force on a point charge Q0 is calculated.
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F.S. (7/10): Space charge

CODES:
ã MATLAB (C. Thomas)

ã C++ (translation of the MATLAB code)

SIMULATION STEPS:
ã a single electron (or ion) is created in the center of the IPM: x= Gaus(0,σx )

y= Gaus(0,σy )
z = Unif(-2.5 mm, 2.5 mm)

ã A proton bunch of total charge q = 1.1 e+9 and kinetic energy Ep is considered

ã A time step dt is chosen by the program

ã the displacement dx of the electron (or ion) is calculated by solving the motion equation (adaptive Runge
Kutta Fehlberg method)

ã at every dt passed, the following variable values are saved: t, x, y, z, vx , vy , vz , ax , ay , az , fields info (lab and
comoving frame)

ã when the y position of the electron (or ion) is larger than 5 cm, the simulation stops

ã t and y are plotted and fitted with a spline to find the time tstopwhen the electrode was reached

ã t and x are plotted and fitted with a spline. x(tstop) is extracted

ã the procedure is iterated N times, to reach a statistical uncertainty of (100
√

N
N

) %
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F.S. (8/10): Space charge

EXAMPLE:
ã Particle: e−

ã Initial particle speed: 0 m/s

ã Proton beam energy: 90 MeV

ã Proton beam direction: Z

ã |Electric field|: 300 kV/m

ã Electric field direction: -Y

ã σx = σy = 0.5 mm

ã σz = 0.75 mm

ã Particle: H+
2

ã Initial particle speed: 0 m/s

ã Proton beam energ: 90 MeV

ã Direction of the proton beam: Z

ã |Electric field|: 300 kV/m

ã Electric field direction: -Y

ã σx = σy = 0.5 mm

ã σz = 0.75 mm

SIMULATION OF A SINGLE
PARTICLE IN THE CHAMBER
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F.S. (9/10): Space charge

SIMULATION OF 4000 PARTICLE INS THE CHAMBER
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F.S. (10): Space charge

h_final
Entries  4000
Mean  0.05397− 
RMS     1.643
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Entries  4000
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Comparison between the initial and final x position distribution

h_final
Entries  4000
Mean  0.05397− 
RMS     1.643

x_initial
Entries  4000
Mean   0.007424
RMS    0.4971

x_initial
Entries  4000
Mean   0.007424
RMS    0.4971

x_initial
Entries  4000
Mean   0.007424
RMS    0.4971

h_final
Entries  4000
Mean   0.01192
RMS    0.7303
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Comparison between the initial and final x position distribution

h_final
Entries  4000
Mean   0.01192
RMS    0.7303

x_initial
Entries  4000
Mean   0.00657
RMS    0.4954

x_initial
Entries  4000
Mean   0.00657
RMS    0.4954

x_initial
Entries  4000
Mean   0.00657
RMS    0.4954

OUTCOME:

ã We are running 1260 simulations

ã For ions no space charge issues

ã For electrons:
if |Ey | gets higher, no space charge problems
if |Ey | ≤ 300000 V/m, no space charge problems if σx ≥ 3 mm
(for |Ey | < 300000 V/m and σx < 3 mm ,
data still to be analysed...)

STILL TO DO (for space charge):

ã Finish running simulations and analyse results

ã Check impact of initial electron speed and, in case, re-run sim

ISSUE:
Storage place
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Read Out (1/2)

Two directions are investigated

vacuum wall
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Read Out

Optical
sensitive parts to radiations

- MCP
- Scintillating screen
 Can be overcome with gain 

calibration by injecting light 
through an optical fiber

 Once not usable, throw and 
change it: maintenance?  

contact with Photonis

Silicon pixel matrix
radiation hard (100 MGy)
electronic cooling down 
pixel auto calibration (current 

injection)
contact taken at Cern

- no beam test before Feb. 2017
- collaboration…

Ability to get profile for each pulse (2.86 ms) : it should be ok for 
both techniques
Idea: test beam with 2 IPMs equipped with both read-out systems
Florian Benedetti, new PhD student starts his position yesterday. He 
will investigate the read-out purposes.


