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ESS will be several times brighter than existing facilities 

More powerful neutron instruments 

Very High detector requirements   



Reflectometry is a technique to study  
SURFACES AND INTERFACES 
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q =(4π/λ) sin(θ)  Log R = IR/I0 

2 standard ways 
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Vertical ToF Reflectometer 
 Horizontal ToF Reflectometer 
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        NO TECHNOLOGY EXISTS TODAY! 

Detector requirements: Neutron Reflectometry 
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500 kHz/mm2 

0.5 mm 

<500 x 500 mm2 

Detector requirements: Neutron Reflectometry 



The Multi-Blade project 



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ (degrees)

ef
fic

ie
nc

y

 

 

4A
2.5A
1.8A

neutrons 

5 degrees 

θ 

Efficiency 45% at 2.5Å 
A single Boron layer inclined at 5 degrees 

Efficiency 
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The Multi-Blade project 
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Why the counting rate capability is improved? 

1.  The intensity is spread over a wider surface 
(5 degrees ~ factor x10) 

2.  Thin gap MWPC (4mm) 

3.  Low gas gain operation G~20 
    (max 0.2pC avalanches) 
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Institut Laue-Langevin 

Institut Laue-Langevin 
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Promising Results!  



The Multi-Blade project 

Wigner Research Institute 

Lund 

Budapest 

The key objective of WP4 is the technological  
evolution of neutron detectors in terms of  
resolution, intensity and dimensions.  

3 years  

Task 4.2 Neutron Detectors – The Intensity Frontier 

Linköping University 

Linköping 
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100x140mm2 active area demonstrator 
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The Multi-Blade detector	



140m
m
	

100mm	

The Multi-Blade detector	

9 Cassettes inclined at 5 degrees with respect to the neutron beam 
1 Individual readout (32 wires+32 strips) + 8 charge division (32 channels) 
  
Individual Readout for the final detector	

neutrons 
Multi-Blade	
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Results 
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PHS and Gain  

Gas Gain ~ 20 (max 0.2pC avalanche charge) 
(contributes to improve the counting rate capability) 

Energy Resolution ~50   KeV 
Energy Threshold  ~100 KeV 

Measured @ 4.1Å 5 degrees 	

measured 

calculated* 

*F.	Piscitelli	and	P.	van	Esch,		
Analy&cal	modeling	of	thin	film	neutron	converters	and	its	applica&on	to	thermal	neutron	gas	detectors		

J.	Instrum.	8,	P04020	(2013)	
arXiv:1302.3153	



Spatial resolution X – wires  

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

Neutron beam 
(Step 0.25mm) 



Spatial resolution X – wires  

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0.35mm 

Neutron beam 
(Step 0.25mm) 



Spatial resolution X – wires  

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0.35mm 
wires 

Neutron beam 
(Step 0.25mm) 



Spatial resolution X – wires  

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0.35mm 
wires 

Neutron beam 
(Step 0.25mm) 



Spatial resolution X – wires  

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

wire number

co
un

ts

0.35mm 

Neutron beam 
(Step 0.25mm) 

wires 

Spatial Resolution 
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*P.	Van	Esch	et	al.,		
An	informa&on-theore&cal	approach	to	image	resolu&on	applied	to	neutron	imaging	detectors	based	upon	discriminator	signals		
in	Proceedings	of	ANNIMA	conference,	Marseille	2013		
arXiv:1307.7507		
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Counting rate capability 

No saturation observed up to ~ 1.6kHz/mm2 
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Summary 

Multi-Blade 2013 
 

Multi-Blade 2016 
(actual status) 

Goal What to do next 

Spatial Res. X 0.3mm 0.6mm  
(wire pitch can be adjusted) 

+ 0.5mm Nothing – Matches the goal 

Spatial Res. Y 4mm 2.4mm + 2 - 3mm Nothing – Matches the goal 

Stability  Not measured ~1% (over 12h) + 1% (over days) Longer tests 

Efficiency Measured 26%  
@ 10deg 2.5Å 

Measured 58% @ 5deg 4.2Å 
Measured 64% @ 5deg 5.1Å 

+ >45% @ 2.5Å Nothing – Matches the goal 
 

Low gain 
operation 

Gain ~60 Gain ~20 + -- Nothing – Matches the goal 
 

Counting Rate 
Capability 

Not measured 1.6 kHz/mm2  

(>17kHz extrapolated) 
500 KHz/mm2 Needs to be measured 

Uniformity X 15% 20%  
(measured in Charge Div. 1350V) 

5% Mechanical Improvements 

Uniformity Y 15% 20% 
(measured in Charge Div. 1350V) 

5% Mechanical Improvements 

Overlap 2mm gap 
50% loss 

0.7mm gap 
50% loss 

≤1xResoltution 
(≤0.5mm) 

Mechanical Improvements 
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We are building a new prototype … 
 
 

The final goal is to reproduce a Reflectivity measurements at an existing Reflectometer. 
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cassette 

32 wires 

32 strips 

Preamp+ADC board 

FPGA board 

Readout Wigner electronics for the MB16 - FIRMWARE  

List mode for each 32 ch  
One event:  
[Board Id, Time-stamp, Ch. Number, Amplitude] 
 
e.g. [Board 1, T1, Ch. , Amp] 
 

cassette 

32 wires 

32 strips 

Preamp+ADC board 

FPGA board 

… many cassettes  

 [Board 2, T1, Ch. , Amp] 

 [Board N, T1, Ch. , Amp] 

 [Board N-1, T1, Ch. , Amp] Computer 



ESTIA 

sample 

neutrons 

4m FIXED! 

2 twin detectors 



Al         Ti      SS	

Planarity is an issue on large surfaces	
MB-16 

Preparing the samples for 2-side  
coating that can turn in the chamber, 
What happens to the knife?	

Ti 	



Reflectometry 

1    10    100    1000 
 1 = state-of-the-art 

Instantaneous 
Rate Capability (log)  

factor by which requirements  
exceed state-of-the-art 

Rate requirements 

500 kHz/mm2 

Detector requirements: Neutron Reflectometry 
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Eff = 1 

1000 neutrons 

Eff = 1 

10 neutrons 

1000 neutrons 

Eff = 0.5 

Eff = 0.5 

10 neutrons 
counted 

100 neutrons 
counted 

Rate capability 100 Rate capability 10000 

5 neutrons 
counted 

500 neutrons 
counted 



Reflectometry: an introduction  



Reflectometry is a technique to study  
SURFACES AND INTERFACES 
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Reflectometry is a technique to study  
SURFACES AND INTERFACES 
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Reflectometry at ESS: FREIA and ESTIA 



Reflectometry at ESS: FREIA and ESTIA 

Horizontal Reflectometer 
(FREIA)  
 
Suitable for liquids  
(limited angular range)  

Vertical Reflectometer 
(ESTIA)  
 
Not suitable for liquids 
More versatile 
(wide angle range) 
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sample 

Conventional ToF refl.  

q =(4π/λ) sin(θ)  

Langmuir–Blodgett trough 



q =(4π/λ) sin(θ)  

sample 

3 ranges in q measured at once without moving the sample 

Langmuir–Blodgett trough 
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Flux at sample 
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q =(4π/λ) sin(θ)  

5�106	
107	

5�108	n/s/Å/cm2		

(at	λ	peak)	

R=100	
R<10-1	

R<10-4	

Flux	at	detector	
100�5�106=	
5�106	n/s/Å/cm2=	
=	105	n/s/Å/mm2	
	

<104	n/s/Å/mm2	
	

<102	n/s/Å/mm2	

Flux at sample 
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The state of the art 

Max rate on detector (at peak) 105 n/s/Å/mm2 

Max global rate 12 MHz (1.2x100mm2 footprint*) 
12 MHz (detector area*)  

Wavelength range 2.5 – 12 Å (optional up to 25Å) 

Efficiency  >60% (above 4Å) 

Max detector size 500x500mm2 

Spatial resolution  4mm x 1mm 

Sample-Detector distance Not fixed (mostly 3m) 

Window scattering <10-4 

x300 

Flux at detector 
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Vertical ToF Reflectometer 
 

It can work in 3 different modes: 
 

q =(4π/λ) sin(θ)  



The state of the art 



Max rate on detector 
(at peak) 

•  Conventional refl.        105 n/s/Å/mm2  
•  High intensity mode    104 n/s/Å/mm2  

Max global rate •  Conventional refl.        12MHz  
      (2x60mm2 footprint or on whole detect. area) 
•  High intensity mode    100MHz ** 
      (105x105mm2 footprint or on whole detect. area) 

Wavelength range 4 – 12 Å 

Efficiency  >60% (above 4Å) 

Max detector size 300x500mm2  

Spatial resolution  4mm x 0.5mm  

Sample-Detector distance Fixed ~4m 

Window scattering <10-4 

The state of the art 

x300 

Flux at detector 
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(at peak) 

•  Conventional refl.        105 n/s/Å/mm2  
•  High intensity mode    104 n/s/Å/mm2  

Max global rate •  Conventional refl.        12MHz  
      (2x60mm2 footprint or on whole detect. area) 
•  High intensity mode    100MHz ** 
      (105x105mm2 footprint or on whole detect. area) 

Wavelength range 4 – 12 Å 

Efficiency  >60% (above 4Å) 

Max detector size 300x500mm2  

Spatial resolution  4mm x 0.5mm  

Sample-Detector distance Fixed ~4m 

Window scattering <10-4 

The state of the art 

x300 

Flux at detector 



Max local rate 105 n/s/Å/mm2 •  Conventional refl.        105 n/s/Å/mm2  
•  High intensity mode    104 n/s/Å/mm2  

Spatial resolution  3mm x 1mm  3mm x 0.5mm 
 

The state of the art 

The ESS requirements 
x300 

Flux at detector 

x3 Resolution 


