

The Multi-Blade ¹⁰B-based neutron detector for high intensity neutron **reflectometry** at ESS

Francesco Piscitelli on behalf of ESS / Wigner / Lund University / Linköping University collaboration

DMSC workshop

2016/11/09

Building research infrastructure and synergies for highest scientific impact on ESS

ESS will be several times brighter than existing facilities

Very High detector requirements

EUROPEAN

SPALLATION

SOURCE

Reflectometry is a technique to study SURFACES AND INTERFACES

Reflectometry is a technique to study SURFACES AND INTERFACES

Reflectometry is a technique to study SURFACES AND INTERFACES

To measure the reflected neutrons as a function of q

Neutron wavelength $q = (4\pi/\lambda) \sin(\theta)$ Incidence angle

q =($4\pi/\lambda$) sin(θ)

Freia, (Frejya, Freyia, Frøya, Frøjya, and Freja) in O Norse the "Lady", one of the Vanin gods, rules over the heavenly afterlife field Fólkvangr and there receives half of those that die in battle.

FREIA – a reflectometer for kinetics and liquid surfaces

Detector requirements

Detector requirements

Detector requirements: Neutron Reflectometry

Detector requirements: Neutron Reflectometry

Detector requirements: Neutron Reflectometry

EUROPEAN SPALLATION SOURCE

ess

The Multi-Blade project

Why the counting rate capability is improved?

concept introduced in 2005

4 cassette demonstrator

proof of concept in 2012

Institut Laue-Langevin

University of Perugia

concept introduced in 2005

4 cassette demonstrator

proof of concept in 2012

Institut Laue-Langevin

University of Perugia

Promising Results!

The Multi-Blade project

BrightnESS

Linköping University

3 years

The key objective of WP4 is the technological evolution of neutron detectors in terms of resolution, intensity and dimensions.

Task 4.2 Neutron Detectors – The Intensity Frontier

GARFIELD and GEANT4 simulations

Materials evaluation

Reduce the scattering

Materials evaluation

100x140mm² active area demonstrator

The Multi-Blade detector

EUROPEAN SPALLATION SOURCE

ess

The Multi-Blade detector

The Multi-Blade detector

Electronics

EUROPEAN SPALLATION SOURCE

ess

Uniformity and overlap

Uniformity and overlap

<u>Uniformity and overlap</u>

Edge

brightness

Garfield Simulation

Efficiency

Gas Gain ~ 20 (max 0.2pC avalanche charge) (contributes to improve the counting rate capability)

<u>Spatial resolution X – wires</u>

An information-theoretical approach to image resolution applied to neutron imaging detectors based upon discriminator signals in Proceedings of ANNIMA conference, Marseille 2013

arXiv:1307.7507

*P. Van Esch et al.,

<u>Spatial resolution Y – strips</u>

Spatial Resolution FWHM ~ 2.4mm

Counting rate capability

No saturation observed up to ~ 1.6kHz/mm²

Mask

Raw image from the detector (log scale)

<u>Images</u>

Mask

Raw image from the detector

<u>Images</u>

Mask

Raw image from the detector

Summary

	Multi-Blade 2013	Multi-Blade 2016 (actual status)		Goal	What to do next
Spatial Res. X	0.3mm	0.6mm (wire pitch can be adjusted)	ŧ	0.5mm	Nothing – Matches the goal
Spatial Res. Y	4mm	2.4mm	+	2 - 3mm	Nothing – Matches the goal
Stability	Not measured	~1% (over 12h)	+	1% (over days)	Longer tests
Efficiency	Measured 26% @ 10deg 2.5Å	Measured 58% @ 5deg 4.2Å Measured 64% @ 5deg 5.1Å	÷	>45% @ 2.5Å	Nothing – Matches the goal
Low gain operation	Gain ~60	Gain ~20	ŧ		Nothing – Matches the goal
Counting Rate Capability	Not measured	1.6 kHz/mm² (>17kHz extrapolated)		500 KHz/mm ²	Needs to be measured
Uniformity X	15%	20% (measured in Charge Div. 1350V)		5%	Mechanical Improvements
Uniformity Y	15%	20% (measured in Charge Div. 1350V)		5%	Mechanical Improvements
Overlap	2mm gap 50% loss	0.7mm gap 50% loss		≤1xResoltution (≤0.5mm)	Mechanical Improvements

Summary

	Multi-Blade 2013	Multi-Blade 2016 (actual status)		Goal	What to do next
Spatial Res. X	0.3mm	0.6mm (wire pitch can be adjusted)	ŧ	0.5mm	Nothing – Matches the goal
Spatial Res. Y	4mm	2.4mm	+	2 - 3mm	Nothing – Matches the goal
Stability	Not measured	~1% (over 12h)	+	1% (over days)	Longer tests
Efficiency	Measured 26% @ 10deg 2.5Å	Measured 58% @ 5deg 4.2Å Measured 64% @ 5deg 5.1Å	÷	>45% @ 2.5Å	Nothing – Matches the goal
Low gain operation	Gain ~60	Gain ~20	÷		Nothing – Matches the goal
Counting Rate Capability	Not measured	1.6 kHz/mm ² (>17kHz extrapolated)		500 KHz/mm ²	Needs to be measured
Uniformity X	15%	20% (measured in Charge Div. 1350V)		5%	Mechanical Improvements
Uniformity Y	15%	20% (measured in Charge Div. 1350V)		5%	Mechanical Improvements
Overlap	2mm gap 50% loss	0.7mm gap 50% loss		≤1xResoltution (≤0.5mm)	Mechanical Improvements

We are building a new prototype ...

The final goal is to reproduce a Reflectivity measurements at an existing Reflectometer.

We are building a new prototype ...

The final goal is to reproduce a Reflectivity measurements at an existing Reflectometer.

Backup slides

Readout Wigner electronics for the MB16 - FIRMWARE

ESTIA

EUROPEAN SPALLATION SOURCE

Req. $#$	Parameter	Description	Value/Error
13.6.9.3r7	L_D	Distance sample to detector	$\pm 0.5\mathrm{mm}$
13.6.9.3r8	$2\Theta_{range}$	Rotation range around Z-axis (scat- tered beam angle)	-10° - +120°
13.6.9.3r9	$\delta 2\Theta$	Rotation accuracy for 2Θ	0.005°
13.6.9.3r10	δX	Horizontal detector resolution	$\pm 0.5\mathrm{mm}$
13.6.9.3r11	δZ	Vertical detector resolution	$\pm4\mathrm{mm}$
13.6.9.3r12	D_X	Horizontal detector size	$500\mathrm{mm}$
13.6.9.3r13	D_Z	Vertical detector size	$250\mathrm{mm}$
13.6.9.3r14	f_{CR}	Maximum expected count rate	$4\mathrm{MHz}/\mathrm{mm^2}$
13.6.9.3r15	δt_{ToF}	Detector time resolution	$1\mathrm{ms}$
13.6.9.3r16	$\epsilon_{4\rm \AA}$	Detector efficiency at 4Å	45%
13.6.9.3r17	ϵ_{γ}	Detector sensitivity to gamma radia- tion	10^{-6}

Planarity is an issue on large surfaces

Preparing the samples for 2-side coating that can turn in the chamber, What happens to the knife?

Detector requirements: Neutron Reflectometry

Reflectometry: an introduction

Reflectometry is a technique to study SURFACES AND INTERFACES

Reflectometry is a technique to study SURFACES AND INTERFACES

Reflectometry is a technique to study SURFACES AND INTERFACES

To measure the reflected neutrons as a function of q

Neutron wavelength $q = (4\pi/\lambda) \sin(\theta)$ Incidence angle

q =($4\pi/\lambda$) sin(θ)

Reflectometry at ESS: FREIA and ESTIA

Reflectometry at ESS: FREIA and ESTIA

Horizontal Reflectometer (FREIA)

Suitable for liquids (limited angular range)

Vertical Reflectometer (ESTIA)

Not suitable for liquids More versatile (wide angle range)

FREIA

Estia

Freia, (Frejya, Freyia, Frøya, Frøjya, and Freja) in Old Norse the "Lady", one of the Vanir gods, rules over the heavenly afterlife field Fólkvangr and there receives half of those that die in battle.

FREIA – a reflectometer for kinetics and liquid surfaces

$q = (4\pi/\lambda) \sin(\theta)$

Langmuir–Blodgett trough

EUROPEAN SPALLATION SOURCE

Instrument	Facility	techn.	area	spatial res.	efficiency	global rate	local rate
			(mm imes mm)	(mm imes mm)		(s^{-1})	$(s^{-1}mm^{-2})$
FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\%$ @ 2.5Å	$3\cdot 10^7$	230
					$\sim 90\%$ @ $10 { m \AA}$		
					$\sim 80\% @ 30 { m \AA}$		
SuperADAM [11]	ILL	³ He	300×300	2.8 imes 2.8	$76\% @ 4.4 { m \AA}$	$2 \cdot 10^5$	-
REFSANS [12]	FRM2	³ He	500×500	$\sim 2 \times 2$	$58\% \ @ 10 { m \AA}$	$2.2 \cdot 10^5$	300
					$\geq 50\% \in [5, 18]$ Å		
INTER [13]	ISIS	³ He, ⁶ Li	200×200	$\sim 1 \times 1$	-	-	-
POLREF [14, 15]	ISIS	³ He	200×200	$\leq 1 \times 1$	-	-	-
BIOREF [16]	HZB	³ He	300×300	2×3	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300
LR	SNS	³ He	200×200	1.3 imes 1.3	-	-	-
MR	SNS	³ He	210×180	1.5×1.5	-	-	-
Platypus [17]	OPAL	³ He	500 imes 250	1.2×1.2	$\sim 60\% @ 10 { m \AA}$	$2 \cdot 10^5$	300
SOFIA [18, 19]	J-PARC	³ He	128×128	2×2	-	-	300
		⁶ Li	256×256	4×4	-	-	300

The state of the art

The state of the art

	Instrument	Facility	techn.	area		spatial res.	efficiency	global rate	local rate	
				$(mm \times m)$	m)	$(mm \times mm)$		(s^{-1})	$(s^{-1}mm^{-2})$	
	FIGARO [9]	ILL	³ He	512×25	6	$\sim 2 \times 7.5$	$\sim 63\%$ @ 2.5Å	$3\cdot 10^7$	230	
							$\sim 90\% @ 10A$			
	Company ADAM [11]	III	311-	200 + 20	0	0.00.0	$\sim 80\% @ 30A$	0.105		
	DEEGANG [19]	ILL FDM9	³ He	300 × 30		2.8×2.8	76% @ 4.4A	$2 \cdot 10^{-5}$	-	
	REFORMO [12]	FRM2	пе	300 X 30		\sim 2 x 2	$> 50\% \in [5, 18]$ Å	2.2 · 10	300	
	INTER [13]	ISIS	³ He, ⁶ Li	200×20	0	$\sim 1 \times 1$	-	-	-	
	POLREF [14, 15]	ISIS	³ He	200×20	0	< 1 × 1	-	-	-	
	BIOREF [16]	HZB	³ He	300×30	0	2×3	$\sim 60\%$ @ 10Å	$2 \cdot 10^5$	300	
	LR	SNS	³ He	200×20	0	1.3 imes 1.3	-	-	-	
	MR	SNS	³ He	210×18	30	1.5 imes 1.5	-	-	-	
	Platypus [17]	OPAL	³ He	500×25	5 0	1.2 imes 1.2	$\sim 60\% @ 10 { m \AA}$	$2 \cdot 10^5$	300	
	SOFIA [18, 19]	J-PARC	³ He	128×12	28	2×2	-	-	300	
			°Li	256×25	6	4×4	-	-	300	
FREIA	Max rate on det	ector (at p	beak)		10 [:]	⁵ n/s/Å/mm ²			x300)
	Max global rate				12 12	MHz (1.2x100 MHz (detecto)mm² footprint*) or area*)		Flux	at detector
	Wavelength range				2.5	5 – 12 Å (opti	onal up to 25Å)			
	Efficiency				>6	0% (above 4/	Å)			
	Max detector siz	ze			500x500mm ²					
	Spatial resolutio	n				ım x 1mm				
	Sample-Detecto	or distance	e			Not fixed (mostly 3m)				
	Window scatteri	ing			<1	<10-4				

The state of the art

	Instrument	Facility	techn.	area		spatial res.	efficiency	global rate (z^{-1})	$\log 1$ rate	
		TT T	3110	$(mm \times m)$	(m)	$(mm \times mm)$	6207 @ 9 F Å	(s^{-1})	(s *mm *)	1 5
	FIGARO [9]	ILL	пе	312 X 28	00	$\sim 2 \times 7.5$	$\sim 63\% @ 2.5A$ $\sim 90\% @ 10Å$	3.10	230	
							$\sim 80\% @ 30 \text{\AA}$			
	SuperADAM [11]	ILL	³ He	300×30)0	2.8 imes 2.8	$76\%@4.4{ m \AA}$	$2\cdot 10^5$	-	Ī
	REFSANS [12]	FRM2	³ He	500×50)0	$\sim 2 \times 2$	58% @ 10Å	$2.2 \cdot 10^{5}$	300	
	INTED [12]	ICIC	³ Uo ⁶ I ;	200 × 20	0	- 1 × 1	$\geq 50\% \in [5, 18]A$			
	POLREF [14, 15]	ISIS	³ He	200×20 200×20	0	$\sim 1 \times 1$ $< 1 \times 1$	-	-	-	ŀ
	BIOREF [16]	HZB	³ He	300×30)0	2×3	$\sim 60\%$ @ 10Å	$2 \cdot 10^5$	300	F
	LR	SNS	³ He	200×20)0	1.3 imes 1.3	-	-	-	ſ
	MR	SNS	³ He	210×18	30	1.5 imes 1.5	-		-	Ī
	Platypus [17]	OPAL	³ He	500×25	50 No	1.2×1.2	$\sim 60\%$ @ 10Å	$2 \cdot 10^5$	300	
	SOFIA [18, 19]	J-PARC	⁶ He	128×12 256 $\times 28$	28 56	2×2 4×4	-	-	300 300	
			1.1	200 × 20		F ^ F		_	500	Ĺ
						- ° -	1			
FREIA	Max rate on det	ector (at p	beak)		10 [:]	⁵ n/s/A/mm ²			(x300)	
	Max global rate			12 12	MHz (1.2x100 MHz (detecto)mm² footprint*) or area*)	Flux	at detector		
	Wavelength range				2.5	5 – 12 Å (opti	onal up to 25Å)			
	Efficiency				>6	0% (above 4,	ڴ)			
	Max detector siz	ze			500x500mm ²					
	Spatial resolutio	n				4mm x 1mm				
	Sample-Detecto	or distance	è		Not fixed (mostly 3m)					
	Window scatteri	ing			<1	0-4				

It can work in 3 different modes:

Instrument	Facility	techn.	area	spatial res.	efficiency	global rate	local rate
			(mm imes mm)	(mm imes mm)		(s^{-1})	$(s^{-1}mm^{-2})$
FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\%$ @ 2.5Å	$3\cdot 10^7$	230
					$\sim 90\%$ @ $10 { m \AA}$		
					$\sim 80\% @ 30 { m \AA}$		
SuperADAM [11]	ILL	³ He	300×300	2.8 imes 2.8	$76\% @ 4.4 { m \AA}$	$2 \cdot 10^5$	-
REFSANS [12]	FRM2	³ He	500×500	$\sim 2 \times 2$	$58\% \ @ 10 { m \AA}$	$2.2 \cdot 10^5$	300
					$\geq 50\% \in [5, 18]$ Å		
INTER [13]	ISIS	³ He, ⁶ Li	200×200	$\sim 1 \times 1$	-	-	-
POLREF [14, 15]	ISIS	³ He	200×200	$\leq 1 \times 1$	-	-	-
BIOREF [16]	HZB	³ He	300×300	2×3	$\sim 60\% @ 10 { m \AA}$	$2\cdot 10^5$	300
LR	SNS	³ He	200×200	1.3 imes 1.3	-	-	-
MR	SNS	³ He	210×180	1.5×1.5	-	-	-
Platypus [17]	OPAL	³ He	500 imes 250	1.2×1.2	$\sim 60\% @ 10 { m \AA}$	$2 \cdot 10^5$	300
SOFIA [18, 19]	J-PARC	³ He	128×128	2×2	-	-	300
		⁶ Li	256×256	4×4	-	-	300

The state of the art

The state of the art	
----------------------	--

Ī	Instrument	Facility	techn.	area	spatial res.	efficiency	global rate	local rate			
				(mm imes mm)	(mm imes mm)		(s^{-1})	$(s^{-1}mm^{-2})$			
	FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\%$ @ 2.5Å	$3 \cdot 10^7$	230			
						$\sim 90\% @ 10 { m \AA}$					
						$\sim 80\% {@} 30{ m \AA}$					
	SuperADAM [11]	ILL	³ He	300 imes 300	2.8 imes 2.8	$76\% @ 4.4 { m \AA}$	$2\cdot 10^5$	-			
	REFSANS [12]	FRM2	$^{3}\mathrm{He}$	500 imes 500	$\sim 2 imes 2$	58% @ 10Å	$2.2 \cdot 10^5$	300			
-						$\geq 50\% \in [5, 18]$ Å					
-	INTER [13]	ISIS	³ He, ⁶ Li	200×200	$\sim 1 \times 1$	-	-	-			
-	POLREF [14, 15]	ISIS	³ He	200×200	$\leq 1 \times 1$	-	-	-	_		
-	BIOREF [16]	HZB	³ He	300×300	2 imes 3	$\sim 60\% @ 10 \text{\AA}$	$2 \cdot 10^{5}$	300			
-	LR	SNS	³ He	200×200	1.3 imes 1.3	-	-	-			
-	MR	SNS	³ He	210×180	1.5 imes 1.5	-	-	-			
-	Platypus [17]	OPAL	³ He	500 imes 250	1.2 imes 1.2	$\sim 60\% @ 10 \text{\AA}$	$2 \cdot 10^{5}$	300			
	SOFIA [18, 19]	J-PARC	³ He	128×128	2×2	-	-	300			
			°Li	256×256	4×4	-	-	300			
									I		
Estia	Max rate on detector (at peak)			Conventiona High intensit	×300)					
	Max global rate			 Conventional refl. 12MHz Flux (2x60mm² footprint or on whole detect. area) High intensity mode 100MHz ** (105x105mm² footprint or on whole detect. area) 							
	Wavelength range			4 – 12 Å							
	Efficiency			>60% (above 4Å)							
	Max detector size			300x500mm ²							
	Spatial resolution			m x 0.5mm							
	Sample-Detecto	or distance	e Fixe	ed ~4m							

	The state of	the art								
	Instrument	Facility	techn.	area $(mm \times mm)$	spatial res. $(mm \times mm)$	efficiency	global rate (s^{-1})	$\log (s^{-1}mm^{-2})$		
	FIGARO [9]	ILL	³ He	512×256	$\sim 2 \times 7.5$	$\sim 63\% @ 2.5 Å$ $\sim 90\% @ 10 Å$ $\sim 80\% @ 30 Å$	$3 \cdot 10^7$	230		
	SuperADAM [11] REFSANS [12]	ILL FRM2	³ He ³ He	$\frac{300 \times 300}{500 \times 500}$	$\begin{array}{c} 2.8 \times 2.8 \\ \sim 2 \times 2 \end{array}$	76% @ 4.4Å 58% @ 10Å	$\frac{2\cdot 10^5}{2.2\cdot 10^5}$	- 300	-	
	INTER [13] POLREF [14, 15]	ISIS	³ He, ⁶ Li ³ He	$\frac{200 \times 200}{200 \times 200}$	$\sim 1 \times 1$ $\leq 1 \times 1$	≥ 50% ∈ [5, 18]A	-	-		
	BIOREF [16] LR	HZB SNS	³ He ³ He	$\frac{300 \times 300}{200 \times 200}$	$\frac{2 \times 3}{1.3 \times 1.3}$	~ 60% @ 10Å -	$2 \cdot 10^5$	300	-	
	MR Platypus [17] SOFIA [18, 19]	SNS OPAL J-PARC	³ He ³ He ³ He	210×180 500×250 128×128	1.5×1.5 1.2×1.2 2×2	- ~ 60% @ 10Å	$2 \cdot 10^{5}$	- 300 300	-	
			⁶ Li	256×256	4 × 4	-	-	300		
Estia	Max rate on detector (at peak)			 Conventional refl. 10⁵ n/s/Å/mm² High intensity mode 10⁴ n/s/Å/mm² 						
	Max global rate			 Conventional refl. 12MHz Flux a (2x60mm² footprint or on whole detect. area) High intensity mode 100MHz ** (105x105mm² footprint or on whole detect. area) 						
	Wavelength rar	4 –	4 – 12 Å							
	Efficiency			>60% (above 4Å)						
	Max detector size			x500mm ²						
	Spatial resolution	on	4mr	m x 0.5mm						
	Sample-Detect	or distanc	e Fixe	Fixed ~4m						

