

EUROPEAN SPALLATION SOURCE

Detector Group Overview

Richard Hall-Wilton Detector Group Leader

www.europeanspallationsource.se

BrightnESS Task 5.1 Kickoff

Detector Strategy: how we get from here to there

- •Support and facilitate partners to be able to deliver performant detectors for world class instruments
- •Act as a host institute to assist and enable in-kind partners to deliver where requested
- Facilitate installation and Commission detectors
- Operate and maintain detectors throughout their lifetime
- Interface management for in-kind partners with other parts of NSS and ESS and other in-kind partners
- •Integrate detectors into a homogeneous ESS instruments suite
- •Where necessary, assist in the design and development of detectors with partners for partners
- A technology service group capable of long term support

What can be done with ESS brightness?

Instrument Design	Implications for Detectors
Smaller samples	Better Resolution (position and time) Channel count
Higher flux, shorter experiments	Rate capability and data volume
More detailed studies	Lower background, lower S:B Larger dynamic range
Multiple methods on 1 instrument Larger solid angle coverage	Larger area coverage Lower cost of detectors

Developments required for detectors for new Instruments

Requirements Challenge for Detectors for ESS: beyond detector present state-of-the art

EUROPEAN SPALLATION SOURCE

Increase factor detector area

Resolution and Area Requirements

EUROPEAN SPALLATION SOURCE

STRATEGY

- Involve in-kind partners and solve problems together
- Modularisation to tackle interfaces and integration
- Instrument baselines, detector design, design teams and build teams identified
- Close working collaborative relationships to mitigate risks
- Mitigation plan identified

ESS Partners on Detectors Solve problems together

EUROPEAN SPALLATION SOURCE

Lunds UNIVERSITET

Technische Universität München

TUDelft

CDT GmbH

CASCADE

Detector

Technologies

		-	
PAUL	SCHER	RER	INSTITUT
_	—		n

NEUTRON DETECTORS

INTERNATIONAL COLLABORATION FOR THE DEVELOPMENT OF

NSS – Functional decomposition

EUROPEAN SPALLATION SOURCE

from Oliver

Functional decomposition facilitates to identify common / similar requirements

Create centralised workpackage to avoid recurring engineering cost in individual instrument projects; minimise risk

Ensure proper integration

Provide solution to instrument projects

Schedule is the driver

Neutron Detectors

EUROPEAN SPALLATION SOURCE

Modularisation to tackle interfaces

Modular Instrument Control Concept

Modularisation for Detector Electronics

SPALLA

- Modularisation to manage key interface
 Single in-kind partner (STFC, UK) for backend readout
- Example of synergy with existing European expertise to reduce developments needed by ESS
- Adapting rather than developing

Detector - DMSC Interface

DG- DMSC interface ...
Covered by Brightness (Tasks 5.1 and 4.4)

Detectors for ESS: strategy update for 16 instruments

Instrument class	Instrument sub- class	Instrument	Key requirements for detectors	Preferred detector technology	Ongoing developments (funding source)	
Large-scale structures	Small Angle	SKADI	Divelsize count rate	Scintillators	SonDe (EU SonDe)	
	Scattering	LOKI	Pixel Size, count-rate	10B-based	BandGem	
	Reflectometry	FREIA	Divolsiza count rata	10D bacad	MultiPlada (ELL PrightnESS)	
		ESTIA	Fixel Size, Count-Tale	TOD-Daseu	Multiblade (LO Brighthess)	
	Powder diffraction	DREAM	Pixel size, count-rate	10B-based	Jalousie	
		HEIMDAL		Scintillators		
Dimaction	Single-crystal	MAGIC	Pixel size, count-rate	10B-based	Jalousie	
	diffraction	NMX	Pixel size, large area	Gd-based	GdGEM uTPC (EU	
Engineering	Strain scanning	BEER	Pixel size, count-rate	10B-based	AmCLD, A1CLD	
	Imaging and tomography	ODIN	Pixel size	Scintillators, MCP, wire chambers		
Spectroscopy	Direct geometry	C-SPEC	Large area			
		T-REX	(³ He-gas unaffordable)	10B-based	MultiGrid (EU BrightnESS)	
		VOR				
	Indirect geometry	BIFROST	Count-rate			
		MIRACLES		SHE-based		
		VESPA	Count-rate	3He-based		
SPIN-ECHO	Spin-echo	tbd	tbd	3He-based/10B-based		

Detectors for ESS instruments: establish a baseline (1/2)

Instrument	Detector Design	Design Teams	Build Teams	Technical Risks	Schedule Risks	
LOKI	BandGEM	Milan-Biccoca/CNR/INFN/ESS (2011)	Milan-Biccoca/CNR/INFN/ESS	Medium/ Low	Low	:
SKADI	Pixelated Scintillator (SoNDe)	SoNDe: FZJ/LLB/IDEAS/LU/ESS (2011)	SoNDe: FZJ/LLB/IDEAS/LU/ESS	Low	Low	-
ΝΜΧ	Gd-GEM	BrightnESS:ESS/CERN (2014)	BrightnESS:ESS/CERN U. Bergen and/or Wigner / ESS	Medium *	Low	-
ODIN	Misc: MCP, Scintillator, Semiconductor	Various: PSI, Berkeley, ISIS BrightnESS: IAEP, MiUN, ESS 	PSI	Low	Low	-
DREAM	Jalousie	POWTEX: FZJ/CDT	FZJ POWTEX	Low	Medium	-
BEER	A1CLD AmCLD	HZG/DENEX (2011)	HZG/DENEX	Low	Medium (ik start delay)	•
FREIA	Multi-Blade	BrigthnESS: ESS/LU/Wigner (2013)	ISIS/ESS/LU/Wigner	Medium	Low	-
ESTIA	Multi-Blade	BrigthnESS: ESS/LU/Wigner (2013)	PSI/ESS/LU/Wigner	Medium	Low	_

Detectors for ESS instruments: establish a baseline (2/2)

Mitigation Plan

Instrument	Primary Detector Technology	Critical decision dates	Backup Detector Technology	Cost Backup Detector Technology (EUR)	Critical decision dates for Day 1 Option	Secondary backup Detector Technology (Day 1 configuration)	Cost of secondary Day 1 option to contingency (EUR)
LOKI	BandGEM	17Q1/2: final technology decision	SONDE	7 M	2019 Q2	He-3 PSD MWPC	500 k
ODIN	Misc: MCP, Scintillator, Semiconductor,	2018	Several Technologies already involved	N/A	2019 Q2	Scintillator+CCD	100 k
BEER	AmCLD/A1CLD	2018 Q1	Jalousie	3 M	2020 Q1	He-3 PSD MWPC	500 k
C-SPEC	Multi-Grid	Technology Decision 2017Q4	He-3 Tubes	>10 M	2020 Q1	MultiGrid Prototypes	200 k
ESTIA	Multi-Blade	Technology decision (17Q4?)	SINE2020	750 k	2020 Q1	He-3 8mm PSD Tubes	500 k
DREAM	Jalousie	TG3: 17Q4?	AmCLD/A1CLD	2.5 M	2020 Q1	He-3 PSD MWPC	500 k
MAGIC	Jalousie	TG3: 18Q2?	AmCLD/A1CLD	2.5 M	2020 Q1	He-3 PSD MWPC	500 k
BIFROST	He-3 Tubes	TG3: 19Q1?	Helium-3 Pixels	1,5 M	N/A	N/A	0

Risk exposure (delta): >15 MEUR

Risk exposure: 2.8 MEUR

Schedule of Key Activities

Key Activities for Coming Year

- Support phase 1 work for all instruments
- Detailed design work for LOKI and NMX
- Brightness, SINE2020 and SoNDE design work for ESS Instruments
- Baseline for detector electronics
- Definition of DG-DMSC and DG-ICS interfaces
- Finalise detector systems in-kind and successful launch of all in-kind work
- Strengthen collaborations for delivering detectors for ESS instruments

EUROPEAN SPALLATION SOURCE

Within BrightnESS Task4

Grants turning developments into design

Helps partners to be involved Mitigating risk for ESS project on critical items ... Use grants to enhance scope of NSS

Move beyond R+D: work moved into detector design phase

Task 4.3

"Realising Large Area Detectors"

UNDS NIVERSITET

Task 4.4 "Detector Realisation"

Solid-State Neutron Detector

Detector Electronics and Interfaces to DMSC and ICS

Design underway for all aspects

EUROPEAN SPALLATION

SOURCE

• Modularisation to manage key interface

EUROPEAN

SPALLATION

SOURCE

35

- Single in-kind partner (STFC, UK) for backend readout
- Example of synergy with existing European expertise to reduce developments needed by ESS
- Adapting rather than developing

• ICS interface design and prototyping underway

• Design model: arXiv: 1507.01838

DG-DMSC interface covered by BrightnESS task
5.1 and 4.4
Resources in place: work started

Detector Electronics and Interfaces to DMSC and ICS

EUROPEAN SPALLATION SOURCE

The DMSC-DG Interface (BrightnESS Task5.1)

Document Number	Chess Core Templat
Date	2015-08-07
Revision	3.15
State	Draft

Service Level Agreement Detector Group – Data Management Scientific Computing

Draft Started

Where do we do the various stages of processing? Need to understand levels of algorithms and advantages of doing it in different places Need to understand what data we will actually get Latency is an issue: need to understand limitations here.

Processing Topics

• Note that a data simulation and expectation is important to be able to make progress on several crucial parts of the design

- Different implications of running in various modes
- Local clustering
- Inter-Chip clustering
- uTPC algorithm
- Data re-packaging: event-like into histogram-like (pixel ID)

- EVENT BUILDER is a JOINT DMSC/DG responsibility
- It must work
- This is the primary deliverable of BrightnESS task 5.1

Where do I get information?

- DG Atlassian. This is our working area.
 - https://ess-ics.atlassian.net/wiki/display/DG/Detector+Group
- There is a detector area on Indico. We use this rigorously:
 - <u>https://indico.esss.lu.se/category/2/</u>
- Specific Links:
- NMX detector event processing
 - <u>https://indico.esss.lu.se/event/497/</u>
- Workshop on Neutron Instrument Architecture for Data Acquisition, Instrument Control,
- & Data Storage
 - <u>https://indico.esss.lu.se/event/110/</u>
- T.Gahl et al, Proc. ICANS XXI (2014) arXiv: 1507.01838

Jamboree Aim

- Get to know who-is-who
- Where the DMSC offices are

• Expand work for WP5 from Gd-GEM for NMX to include MultiGrid And MultiBlade designs

• CSPEC, ESTIA, TREX, FREIA

• Start discussion and brainstorm on what the data mode should be for Beam Monitors (event vs histo vs ..)

- Compilation and consolidation work on the Rates for instruments
- Brainstorm on how to make this work, and commission ...

• This has to do with the software and data aspects: there will be a follow up meeting on the hardware aspects in 17Q1.

Summary

ESS will provide increased neutron brightness
Novel instrument designs push requirements for detectors well beyond current day state-of-the-art

Detector systems project in good shape, and running at full speed
Baseline detector designs exist
Set of design and build partners identified and available
Very much an open collaboration of groups across (mostly) Europe

Detector work now very much design, and not R&D

Schedule and budget: make the detectors affordable and on time
Enable partners

brightness

