
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Streaming architecture at ESS
Dominik Werder :: Paul Scherrer Institut

Experiment Control Workshop DMSC Copenhagen 
December 8th 2016

• Requirements for data streaming
• System components
• Technology
• Status and Performance

• ESSIIP infrastructure and detector streaming

Streaming architecture at ESS

2

• Stream data from sources
• EPICS
• Detectors
• ...

• Combine streams in Nexus files
• Robust API facing towards ECP
• Bandwidth up to 1.5 GB/s
• Redundant
• Scalable
• Extensible

Streaming Requirements

3

EPICS process variables e.g.
• Motors
• Choppers
• Sensors
• Detectors
• Sample Environment
• ...

• Messaging system
• Wire format

Stream EPICS sources

4

• Simulation of AMOR instrument  
https://bitbucket.org/europeanspallationsource/sinq-amorsim

• Simulation of motor controller 
(EL734 with EPICS IOC)

• Dornier chopper as used at AMOR
• Magnets
• AMOR event stream simulated from recorded

histogrammed data files
• to come: Configuration Service
• Test and integration environment for

prototyping the full solution
• Precursor to test at the real instrument

Test platform: AMOR-sim

5

• Data Sources
• EPICS PVs
• Neutron event generator

• Message broker: Kafka
• Forward EPICS PVs: as FlatBuffers into Kafka
• Nexus File Writer
• Experiment Control
• Mantid interface

Streaming Components

6

• Persistent commit log
• Partitions (logs)
• Topics (sets of partitions)
• Guarantees:

• Durable writes
• Producer chooses commit frequency
• Writes stay ordered within a partition

• Redundancy:
• Replication of partitions (master, slaves: auto)

Message Broker: Kafka

7

Scalability
• Many Topics
• Topic's partitions can be on different machines
• Balance over Consumer Groups
• Single Consumer from group for each partition

Message Broker: Kafka

8

[Kafka documentation]

Performance characteristics
• Linear I/O is as fast as it gets
• Independent of log size on disk
• Servers in cluster handle subset of partitions
• Producer responsible to balance over partitions

• but built-in partitioners available  

• Truncate log after time or size is reached
• but also Compaction, keep last known key

• Scales well to many partitions, trade order
• Load balancing over consumers is dynamic

Message Broker: Kafka

9

Performance characteristics
• Balancing over consumers:  

Message is delivered to each ConsumerGroup

Useful for us:
• Handles message passing
• Decouples actors in the system
• Load balancing (I/O, storage, CPU)
• Persistent buffer on disk

Message Broker: Kafka

10

• Flexible data types
• PVStructure
• PVScalarValue<T>
• ...

• PVStructure gives no static guarantees
• but some naming conventions

• Schema-free → introspection on access

Wire Format: EPICS 4 pvData

11

• Pre-compiled schema  
Allows to trade flexibility vs. efficiency

• Easy to use toolchain (flatc)
• Less introspection needed compared to EPICS
• No allocations on read
• Slightly more verbose serialization code
• Efficient access to trusted buffers

• No full parse required
• Static schema compile-time checked
• Flexibility via unions, optionals as special case 

 → Runtime checks, only if asked for

Wire Format: FlatBuffers

12

• Access via offset pointers 
(no bounds checks)

• Verify untrusted buffers
• Check if accesses stay within buffer

Wire Format: FlatBuffers

13

 auto p1 = b->GetBufferPointer();
 auto veri = flatbuffers::Verifier(p1, b->GetSize());
 if (not VerifyPVBuffer(veri)) {
 throw std::runtime_error("Bad buffer");
 }

• Runtime polymorphism on access:

• Read:

Wire Format: FlatBuffers

14

 builder.add_x_type(type);
 builder.add_x(x.Union());

 F v_type() const {
 return static_cast<F>(GetField<uint8_t>(VT_V_TYPE, 0));
 }
 const void *v() const {
 return GetPointer<const void *>(VT_V);
 }
 switch (type) {
 case F::T: f(reinterpret_cast<const T *>(obj));
 ...

• For general PV:  
Build recursive data structure.

• Very dynamic, introspection

Forward EPICS to Kafka

15

table PV { v: F; }

union F { pvByte, pvShort, pvInt, Obj, ... }

table Obj { ms: [ObjM]; }

table ObjM { k: string; v: F; }

• neventGenerator: More static example

Forward EPICS to Kafka

16

// Schema for neutron event data according to RITA2
table Event {
 htype: string;
 ts: ulong;
 hws: [ushort];
 ds: [ushort];
 st: ulong;
 pid: ulong;
 data: [ulong];
}

• Message contains:
• FlatBuffer schema id
• FlatBuffer payload

• Currently very simple:  
| 16 bit schema id | …payload… |

• Schema id must be unique on the network
• or indicated in topic settings
• of course extensible with sub-id if need be

 https://bitbucket.org/europeanspallationsource/streaming-data-types

• Schemas should be able to identify data_source

EPICS to FlatBuffers

17

• Repository: 
https://bitbucket.org/europeanspallationsource/forward-epics-to-kafka

• Monitor EPICS PV's
• Convert PV to FlatBuffer

• general schema: cover all PV structures 
less optimal, but often good enough and easy

• specialized schemas: 
more efficient if performance requires

Forward EPICS to Kafka

18

• Configure via json:
• file, topic on the broker, config api

Forward EPICS to Kafka

19

{
 "broker-data-address": "host",
 "broker-configuration-address": "host",
 "mappings": [
 {
 "channel": "<epics_channel_name>",
 "topic": "<topic_name>",
 "type": "[general/chopper/specialized]"
 },

• EPICS test server
• Vary PV size and update period

• forwarder-epics-to-kafka
• Send as FlatBuffer to Kafka broker

• Kafka Consumer and FlatBuffer Verifier
• Verify all packets arrive
• Collect statistics

• Partitions: 5 (same number of writer / readers)
• Scheme: general

Performance

20

Performance

21

EPICS-server

Forwarder

Verifier

Kafka Broker10 Gb/s link

large SSDs

E3-1245 v5 @ 3.50GHz
4 cores

E5-2640 v4 @ 2.40GHz
10 cores

• Write: 100 MB/s
• All writers make progress
• Queue sizes stable

Performance

22

• Write: 260 MB/s
• Some queue during warm up
• Stable operation

Performance

23

• Verification
• Load balanced over consumers
• FlatBuffer verify and check all payload arrives
• Collection of statistics

Performance

24

• Latency from EPICS production to verification
• Backlog on verification side

Performance

25

• How does the broker feel about that?

Performance

26

Note: Kafka broker is a plain vanilla install, could probably use some tuning...

• Small messages, 52 kHz updates from EPICS
• Processing in batches more pronounced
• Tunable via min/max on queues

Performance

27

• Try hard to stay alive and make progress
• Reconnect EPICS and Kafka

• Good performance even with general schema
• Future

• Use multiple broker connections
• Make all features available through config
• Make features designed for testing optional
• Test on real data sources

Forward EPICS to Kafka

28

• Start (logical) file
• Metadata: directly from ECP
• Create "DataStreams" and friends to subscribe

to topics, care about HDF data set handles...
• Streaming

• Introspect incoming for type, "data_source"
and hand off to the streams

• Write, emit status and metrics as heartbeat
• Next file: With changed metadata
• Stop from ECP, preset timeout if ECP fails
• Scalability, support from HDF

Nexus File Writer

29

Nexus File Writer

30

Infrastructure Overview

31

Communicate via broker: Loose coupling

• Infrastructure at DMSC: 
https://ess-ics.atlassian.net/wiki/display/DMSC/ESSIIP 
https://ess-ics.atlassian.net/wiki/display/IS/ESSIIP+Operations+Status

• Integration of projects from different groups
• 10 Gb/s pairwise
• Kafka broker
• Nexus streamer
• AMOR-sim
• EPICS forwarder
• HDF test writer
• Fast sample IOC

ESSIIP infrastructure  
on behalf of Afonso Mukai et al.

32

• Jenkins build server: 
https://jenkins.esss.dk/dm/

ESSIIP infrastructure  
on behalf of Afonso Mukai et al.

33

• Simulated areaDetector at ESSIIP-lab 
https://ess-ics.atlassian.net/wiki/display/IS/ESSIIP+Operations+Status

• Expected data rates for detector up to 500MB/s
• Plugin for the EPICS areaDetector architecture
• Serializes data using flatbuffers.
• Currently write speed to Kafka up to ~100MB/s
• Requires unit tests and better error handling

before it is ready for a production environment.
• Current version here:  

https://bitbucket.org/europeanspallationsource/m-epics-kafkaplugin

Area detector streaming  
on behalf of Jonas Nilsson et al.

34

