

Raster Scanning Magnet System CDR-2

Validation of DDR & FAT-I

Heine D. Thomsen, Søren Pape Møller Aarhus University (AU), Denmark

> www.europeanspallationsource.se January 13, 2017

- Shall raster the 0.2-2.0 GeV beam in both horizontal (H) and vertical (V) direction across the target
 - maintain distinct H&V amplitude setpoints
 - 5 mT.m / magnet (nominally $B_yL = 1.5$ mT.m and $B_xL = 2.6$ mT.m)
 - maintain distinct H&V frequency setpoints
 - configurable up to 40 kHz (10-40 kHz)
- Shall be synchronized to (and fully cover) the proton beam pulse (14 Hz x 3.57 ms = 5% duty cycle)
- Shall be robust towards localized component and configuration failures:
 - 4-fold redundancy in both planes, individually powered by dedicated (identical supplies)

ESS A2T DC Beam Optics: Similar to LANL MTS (B. Blind, LINAC'06, MOP055)

EUROPEAN

SPALLATION

Lissajous Pattern

- Closed pattern $(f_x/f_y, \phi_{xy}, a_x, a_y)$ within a beam pulse:
- $T_0 = 2.86 \text{ ms} = (350 \text{ Hz})^{-1}$ $f_x = n_x / T_0$, $f_y = n_y / T_0$ $f_x = 39.6 \text{ kHz}$
- Triangle waveforms => No lingering near edges, crosshatch
- $f_x / f_y \sim 1 \Rightarrow$ A single (magnet + supply) design

 $f_v = 29.1 \text{ kHz}$

EUROPEAN SPALLATION SOURCE

RSM Past, Present & Future

- 2015.10.08, CDR-1: to start procurement
- 2016.06.01, Contract signed with Danfysik
- Long-Lead Items (ceramic chambers, ferrites, MOSFETs, ...):
 - Schedule is based on a swift approval of design and/or a collaborative effort in improving the design to make it match ESS' *preferences*.
 - Delays / late changes could significantly delay schedule and excessively increase the total cost!
- Early 2018, CDR-3: approving the performance of the preseries

A Crude Block Diagram

Hardware: Magnets + Support

Profile monitor (wires + non-invasive)

RSM Supply (feasibility study level)

Magnets

10

Raster Scanning Magnet (RSM)

Table 1: Top level parameters and specifications of a RSM.

EUROPEAN SPALLATION SOURCE

Alignment targets (dx, dy) < 0.5 mm, dz < 0.3 mm $(\phi_x, \phi_y, \phi_z) < 1 \text{ mrad}$

Field quality: $\Delta(\int BdI)/\int BdI < 10\% @ GFR = \pm 15 mm$

Parameter	Unit	Value
Beam rigidity	T.m	9.29
Beam pulse (4%)	ms	2.86
Raster pulse (5%)	ms	3.57
Max. f_w	kHz	40
Waveform		Triangle
Min. magnet aperture	mm	100
Magnetic length	mm	300
Turns per coil		2
Peak strength	mT.m	5
Nom. strength (H / V)	mT.m	1.6/2.3
Nom. deflection (H / V)	mrad	0.17/0.25
Max. current (peak-to-peak)	А	± 340
Max. voltage (peak-to-peak)	V	± 650

Magnetic Field Studies – 2D & 3D

UROPEAN SPALLATION

- Using the transient module in Opera 2D, eddy current and proximity effects have been evaluated
 - current distributions are affected but the design is not compromised at 40 kHz (skin depth ~0.3 mm in Cu)
- Only minor surprises found:
 - The inductance is found to be larger than the analytical calculation.
- Integrated field homogeneity is found to be 1% @ GFR (spec. was <10%)
- Thermal calculation: ~15 W (300 W @ 5% duty cycle) is dissipated in each magnet

Raster Scanning Magnet (RSM)

RSM Connections

- Bus bars at top and bottom of coil ends
- Bdot loop: 1 / RSM
 - a single loop around return yoke
 - ± 51 V at full amplitude

Vacuum Chambers & Support Structures

Vacuum System

EUROPEAN

Vacuum system consists of

- Ceramic (Al2O2) chambers at the RSMs
- Quick Conflat flanges
- Hydro-formed bellows, ID
 Ø120 mm
- No pumps, gauges, etc. are relevant
- No metallization layer is provided (but prepared)

- Two families of chambers, differing only by the flange sizes
 - QCF100+QCF100 or
 QCF100+QCF160
 - Consider spares...

Ceramic Chambers

EUROPEAN SPALLATION SOURCE

RSM Support (1 of 2)

- Girder-based: most elements are fixed to precision-machined surfaces on a girder that is aligned as a rigid body relative to two feet.
 - magnet-to-magnet alignment will be checked within a girder section during assembly
- 3 screws + 3 turnbuckles provide six degree of freedom for alignment of the girder
- A total of ±25 mm horizontal range and ±35 vertical range
- Alignment iterate:
 - reach nominal beam height of 1500 mm
 - angular alignment to ±0.1° (pitch/yaw/roll)
 - transverse adjustments
- RSM housing top plate features
 - a set of alignment fiducial holes
 - room for a precision level gauge

RSM Power Supply (RSMPS)

EUROPEAN

SPALLATION

RSMPS Block Diagram

Output Converter, 19" 4U

- Cap. bank (and bleeder circuit)
- 2 x half-bridge modules: SiC MOSFET, 1.2 kV, 3.6 mΩ (CAS325M12HM2)
- Gate drivers

- Output current transducer (for regulation)
- Heat sink with NC thermal switches (supply interlock)
- Short to ground on output: soft earth connection

Control Module, 19" 3U

- Central CPU module
 - Communication to local and remote control
 - Interlock supervision
 - ON/OFF control
 - Analogue measurements
 - Motherboard for regulation and DCCT module

- Signal interface module (including light guides)
 - Timing EVR
- Serial communication
 - 8-port MOXA for RS422to-LAN
- DCCT interface
- Auxiliary power supplies for all electronics

Regulation

Intra-Burst ("fast")

- Pos. and neg. current peak levels are compared for every "pulse", e.g. every 1/40 kHz
- A waveform DC offset can be neutralized in time domain: by introducing a timing skew in the H-bridge

Inter-Burst ("slow")

- Pos. and neg. peak levels are averaged over a burst
- Levels are compared to amplitude setpoints
 - Predicted DC Link value is reconfigured in the postprocessing phase.

- Design has been closely discussed with ICS during the design phase.
 - Danfysik produced a Preliminary Design Report to settle interfaces with ESS systems, in particular ICS
 - ICS encouraged Danfysik to propose a working solution in terms of interfaces to ICS
 - Danfysik adopted the ESS standard optical transmitter/receiver
- System 8500 simulator + EPICS IOC is being implemented (Han Lee)
 - Several documents have been shared about the system
- The FDU is yet not at the stage of a physical design
 - Multiple hardware signals are made available at the RSMPS to the FDU

System Interfaces

- Apart from mechanical interfaces, RSMS has interfaces with
 - Timing system EVR: Pre-Trigger, external clock (light guides)
 - ICS: configuration, status readback (MOXA)
 - FDU: Bdot signals etc. (BNC)
- Several hardware signals are readily available for monitoring the system state on a fast time scale

Synchronization

Pre-Trig & Reference Clocks

ess

- Pre-Trig will be used to passively synchronize the respective wfms by the assumption that
 - the 8 x Pre-Trig signals are received synchronous
 - the specified usable 3.57 ms raster burst is deterministic in terms of start and end relative to the Pre-Trig signals, independent of raster wfm frequency or other parameters.
- External clock (E-Clk, based on ESS MO) will be fanned out to supplies and used to generate raster wfm by decimating to 2x wfm frequency.
- If external clock is absent, RSMPS will revert to its internal clock (I-Clk, at 88 MHz or 44 MHz?)
 - internal clocks are not individually phase-locked
 - internal clocks are not phase-locked to external clock
 - may result in phase error ~1/f.IClk, 200 ns is tolerable on combined wfm
 - The 8x I-Clks are bought to have very similar absolute frequencies.

Case: a single RSMPS loses its E-Clk

- If only the affected RSMPS reverts to I-Clk, differences in frequency of I-Clk and E-Clk will be visible over the course of a single burst
 - reduced combined wfm amplitude + less sharp peak
- If all supplies revert to their respective I-Clk, some way of mediating this should be foreseen.
 - Active signal from FDU to make all supplies revert to I-Clks?

Raster Pulse: Alternating Parity

Shea et al, ICANS'15

(a) 0.8 Å neutron pulse produced by thermal moderator from a single rastered pulse.

Brightness [n/cm²/s/sr/Angstrom]

2.5

Polarity Sync. of Waveforms (Wfms)

- The wfm polarity is to alternate with burst (beam pulse) number (neutron quality issue)
- Critical to sync. polarity within e.g. 4x H RSMs
 - Could lead to wfm cancellation
 - Implementation of polarity sync. could determine impact of faults

Polarity Sync. of Waveforms: Faults

Isolated pol. failure -> 50% amplitude

Serial * polarity failure -> 25% amplitude

Polarity Sync. of Waveforms: Implementation?

- Internal: simple counter, reset upon configuration
 - Hard-coded into supplies
- Serial: head of chain will be master
 - If the chain is broken several masters could be present

- Parallel: all units are similar (no master RSMPS)
 - External polarity master
 - High signal = Start positive
 - Frequency above 10kHz = Start negative
 - Low/No signal = Start negative, set the warning signal

OUT

IN

Pol?

IN

OUT

OUT

IN

IN

OUT

Conventional Hazards

EUROPEAN SPALLATION SOURCE

- High voltage cables: ±340 A, ±650 V (pulsed)
 - Clear labeling and distinction between HV and signal cables
 - Enclosing covers, only removable by tools
- Mechanical hazards:
 - Topple dangers should be avoided if possible
 - Girder should be secured in place once aligned
 - Common practice in accelerators

RSM Failure?

Figure of merit:

Peak current density (J_{max}) on target

EUROPEAN SPALLATION SOURCE

Beam outside nominal footprint regions

RAMI

Incident	Туре	Occurence	Impact	Time to recover	Preventive measures	
1 x power supply failure	Random	< 1 / y	Not harmful for short periods	< 10 min. by adjusting the remaining 3 RSMs.	Monitor internal operating temperatures	
8 x power supply failure	Random, common mode (central system failure, configuration)	?	Single pulse: not harmful	< 10 min. depending on cause	High degree of parallel redundancy, monitor beam (PBI) and magnets (FDU) closely	
			Multiple pulses: PBW / target failure	1-6 months?		
Cable, coil insulation deterioration	Lifetime	1 / 5-10 y?	Not harmful, assuming a localized sudden event	Tunnel access + minutes	Regular inspection for embrittlement	
Vacuum leak	Random (following replacements, alignment)	?	Could prevent operation (beam loss on res. gas)	1-2 days depending on cool down time and preparation	Monitor pressure near raster section	

• Redundant system of raster magnets with strength contingency allows for a quick recovery

The design aims at using radiation-resistant materials, where possible. Additionally components, like cables, are placed as far away from the beam center and prepared for swift replacement.

Suggested Spare Components

EUROPEAN SPALLATION SOURCE

Part	Quantity	Comment
Cable between connection box and bus bars	32	Cables may be exposed to radiation causing degradation. The cables are easily exchangeable causing minimum down time.
Coils	2	May be exchanged in case of long term degradation of insulation
Ferrites, horizontal	2	Ferrites do not degrade. Ferrites are fragile and could potentially be damaged during exchange of a coil
Ferrites, vertical	2	As above
Vacuum chamber A	1	NB: Vacuum chambers could come with only a single QCF-100 flange -> 1 spare part type
Vacuum chamber B	1	

Verification

FAT I (pre-series), Supplier

- Mechanical, electrical, vacuum
- Magnetics: Performance (B(t) waveforms, field quality, synchronization) of magnets + cable + supplies
- Validation program suggested by supplier to be approved by Aarhus University (and ESS)

SAT I (pre-series), Aarhus University

- Visual inspection for potential shipping damage
- System installation + nominal performance testing

Performance Acceptance Test (pre-series), Aarhus University

- Operation will be assessed in detail and long-term stability tests will be made (<4+6 months)
- Typical operation modes + stress tests. Temperature readings (thermocouples + thermography)

FAT II (production series), Supplier

- As FAT I + additional points based on findings from pre-series PAT?

SAT II (production series), ESS + Aarhus University

System installation + nominal performance testing

Top risks

- Top risks
 - Late changes in design parameters: max f (neutronics), etc.
 - Unexpected effects and parameters not included in simulations:
 - cable, stray fields inducing eddy currents, etc.
 - Beam losses, activation due to backstreaming radiation from target
 - System not performing well under long-term tests (true & false trips)
- Planned risk treatment activities:
 - ✓ Perform cable tests before design phase is finalized
 - Pre-series!
 - MPS discussions: Include designer as early as possible

Thank you for your preparation, attention, and comments!

Extra Slides

44

Requirements

- Alignment, cable length, max. B.rho, ...
- Frequency stability, bandwidth, waveform synchronization (M2M, H2V, R2B)
- Imperfections -> specifications:
 - $I_m(t) \sim \int dt [V_{m0}(t) + V_{err}(t)]$
 - Ref. clock phase noise
 - V_{DCL}: Sets slope between switching. Switch-toswitch noise + function of time?

EUROPEAN SPALLATION SOURCE

Integration and Verification

Interfaces:

- The subsystem will be complete / stand-alone -> interface points are few and typically clearly located
- Interfaces include:
 - Global control system, timing system, fast beam interlock (FBI, MPS)
 - Alignment, vacuum, el. power, (passively cooled pulsed system)
- 2015.03.03: Initial meeting on interface with FBI
- Preliminary mechanical sketch of system is being distributed

BDS Optics Design

BDS Overview

- Raster system sweeping beam in 2D pattern @ target
- 8 colinear magnets, individually powered
- Crosshatch pattern $(f_x/f_y, \phi_{xy}, a_x, a_y)$ within 2.86 ms pulse

Figures of merit:

Requirements: Beam

Peak current density (J_{max}) on target Beam inside nominal footprint regions (>99%, >99.9%) **EUROPEAN**

SPALLATION SOURCE

 	$R^2 \mu \Lambda/om^2$					
$<0>_{max} = 0$				Unit \		
	·····			ocation	PBW	BEW (Target)
<u></u>		- 5(amp. x	mm	47.1	59.5
30		50	amp. y 🖵	mm	15.8	20.0
20		-40	$\frac{0}{p}$ rms (x)	mm	10.7	13.5
			rms (y)	mm	4.10	5.05
			rms(x)*rms(y)	mm^2	>44	>68
		-20	Jmax	uA/cm^2		<56
-20			p outside SI 160x60	%	<1	<1
	and the support	-10	p outside	%		<0.1
		0	p outside	%	<0.1	
-100 -100 -00 (x 50 100 150 x [mm]	0	Max.	/0	V.1	± 5 (H)
			displacement	mm		±3 (V)
40			H raster freq.	kHz	>=	= 35

HEBT Layout & Beam Optics

EUROPEAN

SPALLATION

SOURCE

ンジ

A2T Beam Optics

EUROPEAN SPALLATION SOURCE

2.0 GeV: $B_xL = \pm 2.6 \text{ mT.m}$, $B_yL = \pm 1.5 \text{ mT.m}$, $\pm 5 \text{ mT.m}$

Raster Magnet Hardware and Layout

Normalized Aperture

IPAC'14, WEPRO073

Multiparticle Studies

- 1000 HEBTs x 10⁶ particles
- RSM aperture (*s* = 207 m) appears adequate
- NSW aperture (*s* = 220 m) appears adequate

Quadrupole dx, dy0.2 0.01 mm dź deg 0.03 0.003 Gradient % 0.5 0.02 Dipole dx, dy0.2 0.01 mm dź 0.03 0.003 deg 0.02 Strength % Beam dx, dy2 0.25 mm dx', dy'0.01 0.1 mrad 20 2.5 Energy MeV Emittance % 10 1 Mismatch % 10 1 Current mA 1 0.1

IPAC'14, WEPRO074

- A2T quad harmonics were scanned in log. steps 1 u to 100 u ($u_n = \int \Delta B_n / B0 \times 10^4 = 1 \text{ u}$)
- 500 k particles tracked to target

7.7 unit contamination for each u_n

RSM Systematic Sextupole?

- $u_3 = \int \Delta B_3 / B_0(t) \ge 10^4$
- Beam along RSMs:
 - rms size < 1 mm</p>
 - dx, dy < 3 mm
- RSMs
 - GFR = ± 15 mm
 - Gap = ± 50 mm
 - Aperture = \pm 40 mm
- RSM *u*₃ < 10³ (or 10%)

RSM Alignment Errors?

 Insensitive to displacements: - dx, dy < 0.5 mm0.5 - dz < 0.3 mm0 Roll errors: distorts pattern outline -0.5 (shearing) depends on average roll error in H/V set -1 – pitch, yaw, roll < 1 mrad</p> -0.5 -1 0 0.5 1 Relative horizontal deflection Roll error distribution < 100 mrad