DE LA RECHERCHE À L'INDUSTRIE

SOURCE SIGNAL ESTIMATION AND READOUT SYSTEMS

ESS-0092071 & ESS-0092072 CEA-ESS-DIA-RP-0016 & CEA-ESS-DIA-RP-0017

Optimus+

P. Abbon, F. Belloni, <u>F. Benedetti</u>, X. Coppolani, J.-F. Denis, F. Gougnaud, C. Lahonde-Hamdoun, J. Marroncle, V. Nadot, L. Scola (CEA)

C. Thomas (ESS)

www.cea.fr

I. Source signal estimation

- a. Model
- b. Assumptions
- c. Results

II. Readout systems

- a. Conductive strips
- b. MCP and conductive strips
- c. MCP, Phosphor Screen and Camera
- d. Silicon pixelated sensor and TimePix3

I. SOURCE SIGNAL ESTIMATION

Ionization

Goal: estimate the number of ionized ion/electron pairs created

$$N_{ionization \ pairs} = N_{beam} \cdot \frac{1}{W} \cdot \frac{dE}{dx}$$

 $-\frac{dE}{dx} \rightarrow \text{ESS stopping power}$

 $-W \rightarrow$ Energy to produce a pair

 $-N_{beam}$ \rightarrow Number of protons in one pulse beam

■ To quantify the stopping power→Bethe-Bloch

Bethe-Bloch

$$\frac{dE}{dx} = K \cdot \rho \cdot \frac{Z}{A} \cdot \frac{z^2}{\beta^2} \left[\frac{1}{2} \cdot \ln \frac{2 \cdot m_e \cdot (\beta \gamma)^2 \cdot T_{max}}{I^2} - \beta^2 \right]$$

- Stopping power of heavy charged particle in a medium
- Constants
- Medium → Most valuable parameter: density of medium
- Incident particle → Most valuable parameter: energy of particle

Medium: ESS Vacuum

- Perfect gas mixture:
 - 79% H₂
 10% CO
 - 10% CO₂
 - 1% N₂
 - At 10⁻⁹ mbar → Low density !

Particle: Protons Beam

Protons

- From 90MeV to 2GeV
- Pulse length: 2.86ms
- Pulse repetition: 14Hz
- 62.5mA → 10¹⁵ protons per pulse

DE LA RECHERCHE À L'INDUSTRI

Energy (MeV)	lons/Electrons per pulse per cm	Charge (fC)	I(pA)
90	105986	17	5.94
200	60159	9.6	3.35
500	36622	5.87	2
1000	29463	4.72	1.65
1500	27717	4.44	1.54
2000	27224	4.36	1.52

CEA - Saclay

Gas	Proportion %	Contribution %
H ₂	79	30
СО	10	25
CO_2	10	40
N ₂	1	5

- Signal expected is very low
- Contribution != Proportion
- Independent to readout !

II. READOUT SYSTEMS PRESENTATION

Requirements

- ESS facility → Reliable readout system
 - Radiation hard
 - Ageing of device
 - Low outgassing materials compliant to ESS rules
- Low Signal → High Sensitive readout
 - Measure at beam intensity 62.5 mA down to 6 mA current
- Speed:
 - Pulses (integration)
 - Pulse
 - Bunches (pulse behavior)
- Ions detection → Readout should work either with ions or electrons
- Electronics integration

Several readouts

- Many requirement → test several readouts in order to find the best one
- Four interesting readout has been selected
- We will be able to test several readout (at least 3) with one test bench

CEA A. CONDUCTIVE STRIPS

Principle of operation

- Ceramic PCB with conductive strips
- Charge in motion induces current on strips
- Integrator or transimpedance amplification

CEA Saclay/Irfu ESS NPM Cold Linac | 31/01/2017 | PAGE 12

Electronics

A. CONDUCTIVE STRIPS

- Existing solution: the DDC chips family from ΤI
- Double integrator for continuous integration + ADC
- Multichannel (2 up to 64)
- Integration range:
 - Time: 10µs to 1s
 - Selectable range: 3pC up to 350pC
 - Noise: few ppm decades of FSR (see next slide)

http://www.ti.com/product/DDC264

TEXAS INSTRUMENTS

Cea A. CONDUCTIVE STRIPS

Electronics

- DDC family is already used in Nuclear Instrumentation
- CARAMEL Board by LPC (Caen, France)
 http://faster.in2p3.fr/
- CARAMEL → 2 × DDC316
 - 32 channels
 - **1**6 bits
 - Range: 3pC up to 12 pC
 - 🗕 10 µs to 1 ms
- µTCA solution:
 - CARAMEL (DAQ)
 - SYROCO_AMC (CS)

Cea A. CONDUCTIVE STRIPS

Electronics (Noise)

Principle of operation

- MCP multiplies ions/electrons
- Use MCP to increase signal on strips
- Typical gain of a MCP:
 - Single: 10⁴
 - Double (stack): 10⁶
- For 4fC as MCP input \rightarrow 4 × 10⁴ × 0.6=24pC
- So readout electronic can be the same as previously !

MCP Ageing

- MCP drawback: Ageing
- Depending of gain
- Data on ageing from Hamamatsu
- E.g. gain: 10⁴, at 90MeV: 105k ions/e-
 - At t = 0 gain = 100%
 - At t = 1,4 years gain start to decrease
 - At t = 14 years gain = 80%
 - Gain should be optimized
- A calibration system is also considered
 - Uniform UV light + OF
 - RO offline correction

Vacuum wall

Principle of operation

- Use phosphor screen instead strips (P-MCP)
- Phosphor screen: electrons → light
- Shield against background photons
- Camera can be deported with coherent OF bundle
 - To be define (radiations, location)
- Calibration also required
 - P-MCP ageing

Cea D. SILICON PIXELATED SENSOR AND TIMEPIX3

PS NPM (PS-BGI)

- Project for the PS at CERN
- 4 Timepix3 = 56.3mm x 14mm total surface
- High sensitive and fast NPM
- 55µm spatial resolution
- Cooling system are required
- Collaboration since October 2016

Storey, J.; Bodart, D.; Dehning, B.; Levasseur, S.; Pacholek, P.; Rakai, A.; Sapinski, M.; Schneider, G.; Steyart, D. & Satou, K. Development of an Ionization Profile Monitor Based on a Pixel Detector for the CERN Proton Synchrotron *IBIC2015. Melbourne, Australia*, **2015**

Cea D. SILICON PIXELATED SENSOR AND TIMEPIX3

Collaboration

- Process is difficult
 - Complex PCB vacuum compatible
 100 wirebonding per chips
 Critical chips placement
- CERN Team provide us:
 - A lot of information
 - A PCB
- Wirebonding at CEA-Saclay if possible:
 - Gold bonding on TP1→OK
 - Next attempts on TP3
 - Try to perform reliable and automatic process

Silicon sensor

- Silicon pixelated detector
 - Great spatial resolution
 - Silicon is versatile SC
- 1 electron at 5keV → 1400 pairs in silicon
- Ions at keV are completely stop in few hundred nm
 - **To be tested** !

TimePix3

- 256x256 55µm pixel readout chip for Hybrid Pixel Detector
- Still work after 4.5 MGy
- Noise is about 500 electrons
- Three different measure modes:
 - Time of Arrival
 - ToA + Time over Threshold
 - ToT + Events counting
- Two different read modes:
 - Frame based
 - Data driven

Analog front-end

TimePix3

- Maximum hit rate without dead time:
 - 80 MHits/s per chip
 - 50 kHits/s per pixel

~140 pixels are hit more than once/pulse
 5kHits/s max per pixel

CEA Saclay/Irfu ESS NPM Cold Linac | 31/01/2017 | PAGE 22

COO D. SILICON PIXELATED SENSOR AND TIMEPIX3

Electronics

- TimePix3 need a CS electronics
- FitPix: Commercial solution
 - Advacam/WidePix
 - General purpose use → Limited
 - We will use it for tests
- CERN Team custom solution
 - In development
 - Based on GEFE Board
 - Dedicated to NPM usage

http://www.ohwr.org/projects/gefe/

CONCLUSION - SUMMARIZE

DE LA RECHERCHE À L'INDUSTRI

Cea conclusion - summarize

THANKS FOR YOUR ATTENTION -QUESTIONS ?

BACKUP SLIDES

