

IPM TEST BENCH DESIGN AND BEAM TEST STRATEGY

DE LA RECHERCHE À L'INDUSTRIE

electron/ion detection?

Read-Out

- RO presentation and their needs
- CS needs

test bench design and installations test program backgrounds and lifetime materials interfaces & risk list draft planning summary

Ceal Electron or Ion Detection?

ions are interested at least for 3 reasons

- 1. electron secondary emissions
 - if signal amplifiers (MCP, Si pixels) → SEE ≈ 0, since read_ induced current ≈ 0
 - no Frish grid
- 2. Proton bean energy transfered to ions << electrons
 - Momentum conservation
 → K_e = 10 eV imply K_{H2+} = 2.7 meV
 - well known than profile with ions smaller than electrons (JL Vignet @ Ganil, G Cuttone et al., PAC 1997)
- 3. Space charge effect
 - Following what Francesca has calculated, ion profile are less sensitive to electron ones.

ions drawbacks

- very small depth penetration, even for 60 kV
 → enough to produce signal in TimePix3 for instance?
- induced damage in materials \rightarrow to be investigated
- to be considered, deposit of MGO on MCP to increase the gain

DE LA RECHERCHE À L'INDUSTRI

Identification of 3 / 4 ROs we foresee to test

Cea 1. CONDUCTIVE STRIPS

Conductive strips (copper on ceramics)

- strip width min = 0.4 mm
- ratio = 0.3 \rightarrow minimum strip gap 120 μ m
- For nominal beam intensity
 - DDC264 (TI) → linearity down to 50 fC (conservative) gain ≈ 10⁴ missing

For beam tuning (I=6 mA) \rightarrow gain $\approx 10^5$

Expected charge on 32 RO strips, for 2 cm RO length at 2 GeV Strips spread over ± 24 mm = ± 12 g (g = 2)

Strips spread	over ±24	$mm = \pm 12$	σ_0	(σ ₀ :	= 2)

strip #	11 to 2	2 10)-23	9-	24	8-25	7-26
size	0.4	(0.5		.6	0.7	0.8
gap	0.8	().1	0.	12	0.14	0.16
Strip #	6-27	5-28	4-2	29	3-30	2-31	1-32
size	0.9	1	2		3	4	5
gap	0.18	0.2	0.	4	0.6	0.8	1

IPM PDR 31/01/2017 - Test bench design and test stategy | PAGE 5

Cea 1. CONDUCTIVE STRIPS (2)

Response test of DDC 264

- very low DC current injection
- integration time = 2.6 ms

Response

- linearity down to 50 fC (*conservative hypothesis*)
- → RO capacitance (cable length 50 pF/m → noise)

Note: for 2 m, extra noise is 1.6 fC

1.4E-11

IPM PDR 31/01/2017 - Test bench design and test stategy | PAGE 6

2. CONDUCTIVE STRIPS + MCP

MCP

- Hamamatsu insures gains of 10⁴ for 1 stage, and 10⁶ for 2 stages
 - active areas: 55×8 / 45×35 / 81×31 mm² (+6 mm)
 - thickness < 0.6mm

Insertion of MCPs in the IPM

 use the previous IPM with a mechanical system to mount and unmount MCPs

To be done for 1 & 2

- electric field study uniformity, with and without MCPs \rightarrow COMSOL
- increase the IPM height (>10 cm) to avoid direct sight MCP wrt the beam pipe
- mechanical study, particularly the support of the IPM \rightarrow lever arm
- CS
 - MCP \rightarrow HVs + optical monitoring system (o.f. + laser light source)
 - Caramel card (32 channels) + SIROCO-AMC $\rightarrow \mu$ TCA (already done @ LPC Caen
- vHV implementation (up to 65 kV)
 - double polarity + / -

22 3. MCP + PHOSPHORESCENT SCREEN + CCD

MCP + Phosphorescent screen

- for instance Hamamatsu propose 1 stage MCP integrating a phosphorescent screen
- a light screen to avoid parasitic light entering in the CCD

CCD

- lens system for adaptation
- Note: for beam test CCD can be installed behind the glass window. If CCD would be chosen, a coherent optical fiber bundle should be used for transporting image in an non radiative location

To be done for 3

- electric field study uniformity, with the MCPs \rightarrow COMSOL
- mechanical study: for lever arm, same study as before
- CS
 - MCP \rightarrow same as before
 - CCD data read-out
- vHV implementation (up to 65 kV) \rightarrow same as before

Silicon matrix based on TimePix3

- beam test
 - FEE \rightarrow Cern board with 1 TimePix3
 - Read-Out card → FitPix (COTS)
 - cooling system: to be investigated?
- Future with TimePix3 for final IPM → collaboration with J. Storey group @ Cern, contribution to the read-out process progress

To be done for 4

- electric field study uniformity \rightarrow COMSOL
- mechanical study \rightarrow necessity for a cooling system?
- CS
 - FitPix \rightarrow to be adapted
- vHV implementation (up to 65 kV) \rightarrow same as before

Beam test into step

- Saclay (IPHI proton: 3 MeV, up to 100 mA)
 - for development with our on-site specialists + measurements
- other facility, in the energy range of ESS
 - Jülich
 - PSI (Switzerland)
 - other facilities, GSI...

The 3 RO systems for the beam test of the bench based on EPICS

- ROs identified
 - COTS
 - Work on component already done with µTCA
- budget and HR* \rightarrow AIK 7.3
- what for the final IPMs? still an orphan WP!

*HR \rightarrow Human Resources

Read-Outs	#	Solution / to be done	COTS
conductive strips	1-2	Caramel + SYROCO_AMC	yes
MCP	2-3	HV monitoring	yes
CCD camera	2-3-A-B	calibration (o.f. + laser source light)	yes
phosphorescent screen	В	insertion monitoring (actuator)	yes
silicon pixel TimePix3	4	FitPix	yes
HV and LW	all	usual	yes
silicon pixel TimePix3	future	parallel coll. with Cern (development)	no

 $COTS \rightarrow Commercial Off The Shelf$ $0.f. \rightarrow optical fiber$

IPM PDR 31/01/2017 - Test bench design and test stategy | PAGE 11

Cea ICS / PROTOTYPE TASKS

Man Power for the Read-outs of the beam tests

Victor Nadot (internship, involved in Françoise's team since 9/2015) Jean-François Denis (engineer, Victor's adviser) Françoise Gougnaud (ESS WP manager, already involved)

Man Power for manufacturing phase

Victor, Jean-François & Françoise

			2016			2017				2018									2019			
		4/1			1/1	4/1				1	/1	4/1				1	/1	4/1		7/1		
		Dra	liminary study>	technical renor	d D	IDR																
			- SC effect	reennitarrepoi		DI																
			Electric field	s,			G	jON	loG	0	gat	е										
			- background,	FEE																		
					-	Protot	ype Desi	ign (+LC	S), test:	>repo	rt (DR	-									
						- design	, FEE, te	st										D				
						- LCS	0.000												_			
						- Quality	γ γ						-					1				
												Ma	nufactur	ing of 5 NF	PM, tests	s and se	<mark>nt to</mark> ES	S				
Read-Outs	#	Solution / to be done		CO.	TS							- fol	low-up, t +	test, SC eff	iects				_			
																	delive	ry ESS				
conductive strips	1-2	Caramel + SYROCO_AMC		ye	S												of 5 N	PMs I	nst & Co	m.		
MCD	2.2	HV/ monitoring		1/0	~														- test,	reports	, SAR	
MCP	2-3	HV Monitoring		ye	S																	
CCD camera	2-3-A-B	calibration (o.f. + laser source	e light)	ye	s																	
phosphorescent screen	В	insertion monitoring (actuator))	ve	s																	
P	_		/		-																	
silicon pixel TimePix3	4	FitPix		ye	S																	
HV and LW	all	usual		ye	s																	
silicon nivel TimeDiv3	futuro	narallel coll with Cern (develo	opment)	nc	,																	
Silicon pixer TimePixo	luture	parallel coll. with Cerri (develo	philent)	nc	,																	

DE LA RECHERCHE À L'INDUSTRIE

DE LA RECHERCHE À L'INDUSTRIE

COO TEST BENCH SET UP AT IPHI

IPHI

- Discussion with Bruno Pottin (Dec. 13th 2016)
 - welcome us for beam tests after Sept. 2017
 - identification of the bench test location

Cea beam test program at IPHI

- Installation \rightarrow after all system tuning
- Read-Outs checking
 - Frish grid effect
 - expected counting rate measured (B-B)
- uniformity of the electric field
 - comparison between \vec{E} / no \vec{E} read-outs (FPM, p-screen)
 - influence of interferences between 2 IPMs
- +/- HV polarity
 - ion detection: does it work? better result?
 - MCP, TimePix3: ion / electron
- Space Charge effect
 - once stabilized beam \rightarrow beam parameters frozen
 - increasing and decreasing the IPM HV
 - \rightarrow comparison with SC calculation
- sparking effect
 - same entrance geometry VC / bench test
 → HV increasing
- and general improvements...

\rightarrow Then ready to move to another test facility

Need to ask permission and availability (after GoNoGo)

- Jülich
 - Proton beam extracted from COSY
 - E_P = 2 GeV
 - $cw \ 10^{10} \text{ proton/s} = 1.6 \text{ nA}$
 - Vacuum? Down to10⁻⁶ mbar?
 - a priori quite large space to install our test bench
 - ESS agreement with this facility
- PSI in Switzerland
 - Cyclotron HYPA \rightarrow E_P = 590 MeV, I = 2.2 mA
 - Cyclotron COMET (proton therapy) \rightarrow E_P = 250 MeV
 - \rightarrow Is it even possible to get "parasitic" beam?
- GSI?

Available data are not convenient to use them for both following topics

- contribution of uncorrelated beam protons to the profile measurement (inside BP)
 - \rightarrow need phase space of these protons for estimation (just checking)
 - \rightarrow yesterday: Mamad meeting (tbd with Yngve)
- radiative dose for material ageing and choice (outside BP)
 - \rightarrow need calculated doses for 1 W/m for IPM frame, read-outs...
 - \rightarrow yesterday: Lali meeting (estimation with large error)

Quadruple hypothesis (around 24 cm)

- Made with iron
- ▶ Power deposited in quad: $0.01 0.1 \text{ mW/g} \rightarrow 0.06 \text{ mW/g}$

Read-out

Material

Silicon, PCB, electronic components $\rightarrow \rho \approx 1 \text{ g/cm}^3$ RO volume $\approx 1 \times 10 \times 20 = 200 \text{ cm}^3$

- conservative hypothesis: same absorptions as quad! 0.06 mW/g = 0.06 W/kg = 0.06 J/kg/s = 0.06 Gy/s
- "Maximal" yearly (6000 h) power deposited in Read-Out
 - ➢ 0.06 × 3600 × 6000 = 1.3 MGy/year

Caution: such a value can be seen as a "maximal" power yearly deposited in a RO part located closer to 24 cm from the beam axis!

Conclusion: specific calculations are required!

MCP: considering the worst case

- ESS proton beam: E=90 MeV, I=62.5 mA, P=10⁻⁹ mbar, 1 year = 6000 h \rightarrow 1 1 10⁵ cr/ice pairs/pulse/PO em
 - \rightarrow 1.1 10⁵ e⁻/ion pairs/pulse/RO cm
- number of e⁻/ion impinging MCP per year on 2 cm of MCP
 - \rightarrow 2 × 1.1 10⁵ × 14Hz × 3600s × 6000h = 6.7 10¹³
- number of e⁻ produced by MCP set to 10⁴ gain per year
 - \rightarrow 10⁴ × 6.7 10¹³ = 6.7 10¹⁷ = 0.11 C/year

or $6.7 \ 10^{18} = 1.1 \ C$ in 10 years!

Hamamatsu \rightarrow 20% gain loss after 10 years

TimePix3: 10 MGy

for iron (Quad!): 1.3 MGy/year
 → 10 / 1.3 = 7.7 years

note: TimePix3 \neq iron and dose unknown

inside the BP!

TOTAL ACCUMULATED CHARGE (C/cm²)

IPM PDR 31/01/2017 - Test bench design and test stategy | PAGE 19

For details, please consult ESS-0092073 → "Interface and Risk Management for the Cold Linac NPMs"

Interfaces in production and installation

- materials → comply with ESS vacuum handbook (ESS-0012894...)
- vHV (up to 65 kV) → European/Swedish electrical safety regulations
- cable and rack management
 - \rightarrow list of cables, cables pulled during installation phase...
- cooling (TimePix3) \rightarrow can be provided by the cooling system pipes group
- mechanical integration \rightarrow updating and exchange on 3D mockup (Katia)
- EMC → may have concerns with LWU quads (fringe field)
- schedule \rightarrow for instance LWU installation may be delayed by 2 months
- CS → from LCS to ICS

Interfaces in operation

- TimePix3 \rightarrow up to 10 MGy for the chip, to 200 kGy for the FEE
- MCP → estimation
- CCD →

For details, please consult ESS-0092073 \rightarrow

"Interface and Risk Management for the Cold Linac NPMs"

- performance degradation due to
 - \rightarrow too low vacuum pressure
 - \rightarrow to space charge effect
- radiation degradation \rightarrow shortening the maintenance period

Prototype design and test Planning

ion detection \rightarrow better for profile measurement

FEE and CS

- FEE: work to be done
- CS: ROs identified, HR too for the bench prototype, but CS for final IPM still orphan WP!
- test bench prototype: task list at IPHI before to proceed in another facility
- a rough planning is draft for test beam at IPHI Saclay and elsewhere

Miscellaneous

- radiative background inside and outside the "beam pipe"
 - \rightarrow lifetime of materials

Interface and Risk list

DE LA RECHERCHE À L'INDUSTR

2016		2017		2018			2019
4/1	1/1	4/1	1/1	4/1	1	/1 4	/1 7/1
Preliminary study> technic	cal report	PDR					
- SC effect		GoNo	Go gate				
Electric fields,							
- background, FEE							
		Prototype Design (+	LCS), test> report	CDR			
		- design, FEE, test					
		- LCS					
		- Drawings					
		- Quality					
				Manufacturing	of 5 NPM, tests and se	nt to ESS	
				- follow-up, test	t. SC effects		
				- test			
				(CSC		dolivon, ESS	
						of C NDMa	
						OT 5 INPINIS	Inst & Com.
							- test, reports, SAR