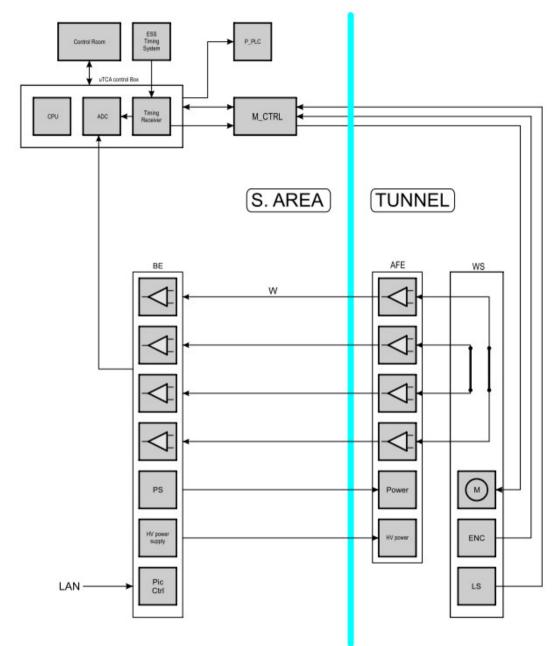


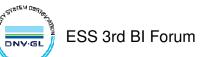

# Elettra Sincrotrone Trieste





# AFE and BE development upgrade






#### WSAS simplified system block diagram Diagram by S.Grulja



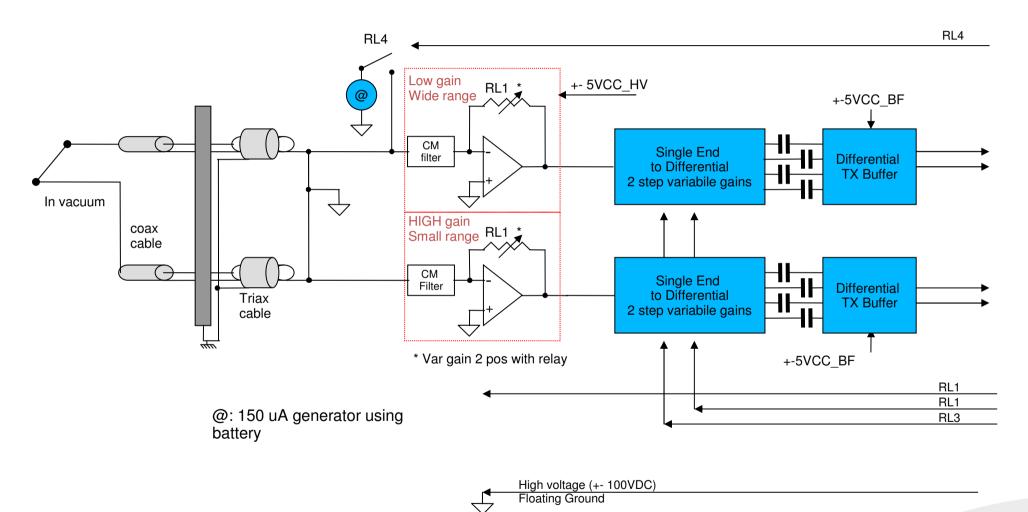


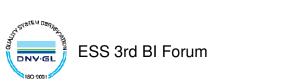


180 900

3

JSTEM M


DNV·GL

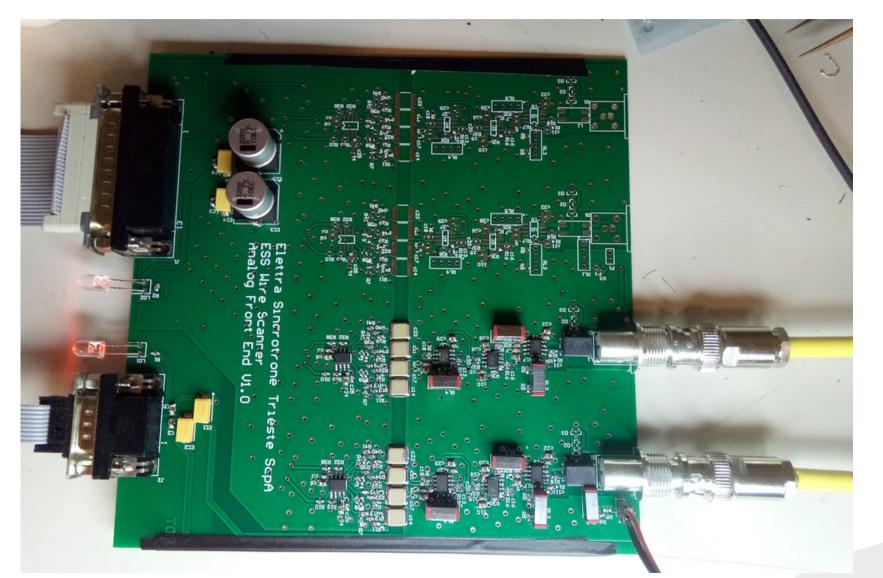


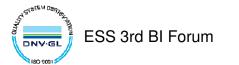

### Simplified Block Diagram for AFE V1.0



#### Analog Front End TWO IDENTICAL STAGES: Horizontal and Vertical







4

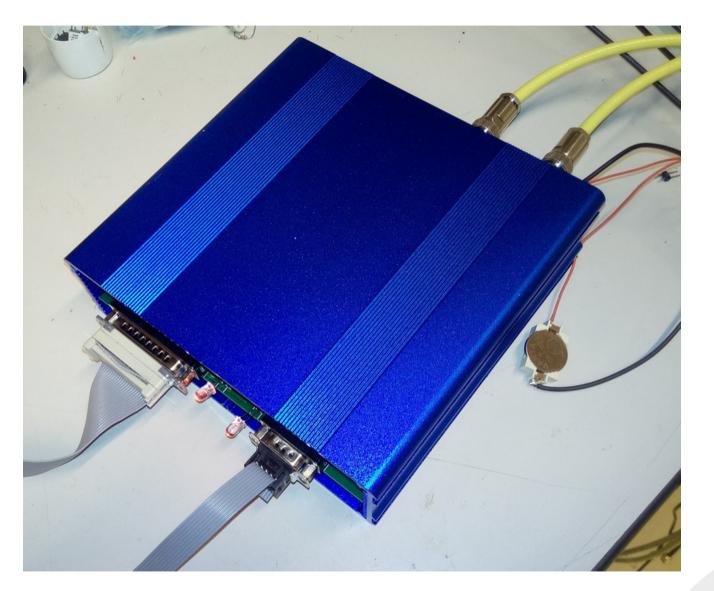


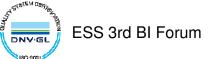
## AFE prototype











5



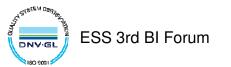
### WS Analog Front-End BOX











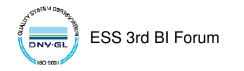



### **AFE** specifications



| Parameter         | Value                        | Symbol               | Notes                 |  |  |
|-------------------|------------------------------|----------------------|-----------------------|--|--|
| Input channel     | 4                            | I_Wi; i=14           | Tri-axial             |  |  |
| Max Input Voltage | 3VAC                         | I_W <sub>MAX</sub>   | Input diode protected |  |  |
| Max Input Current | N/A                          | I_W <sub>MIN</sub>   |                       |  |  |
| Input Impedance   | 50 ohm                       | Z <sub>IN</sub>      | Not well matched      |  |  |
| Bandwidth         | 2MHz                         | BW <sub>AFE</sub>    |                       |  |  |
| Output channel    | 4                            | OUT <sub>AFE</sub> i | Balanced twisted pair |  |  |
| Minimum Gain      | 1V/400μA                     | G <sub>MIN</sub>     | V / A                 |  |  |
| Maximum Gain      | 1V/1μA                       | G <sub>MAX</sub>     | V / A                 |  |  |
| Power supply      | +/- 5 V<br>@ <b>50mA MAX</b> | I <sub>supply</sub>  | via BE cable          |  |  |
| Dimension         | 170 x 160 x 54               |                      | mm                    |  |  |
| Weight            | 400 g                        |                      |                       |  |  |



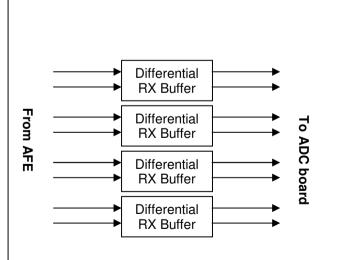

7

SYSTEM ON

DNVGL



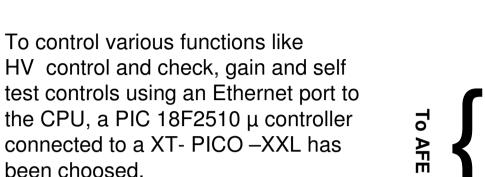
- The input signal range has been extended by adding two relays in the signal chain. It also increase the gain of the entire system.
- Added a Common Mode Choke to filter better the input signal. It prevent also some parasitic charges to interfere with the signals.
- Added a strong capacitor (2200uF) on the Buffer power supply to increase the output buffer performances.

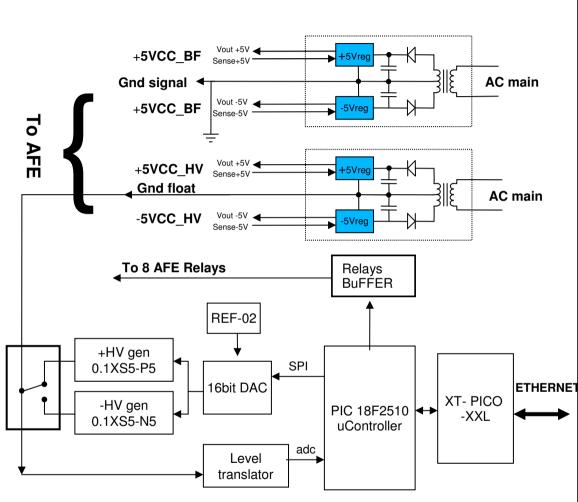










OHEAS LACCT 9



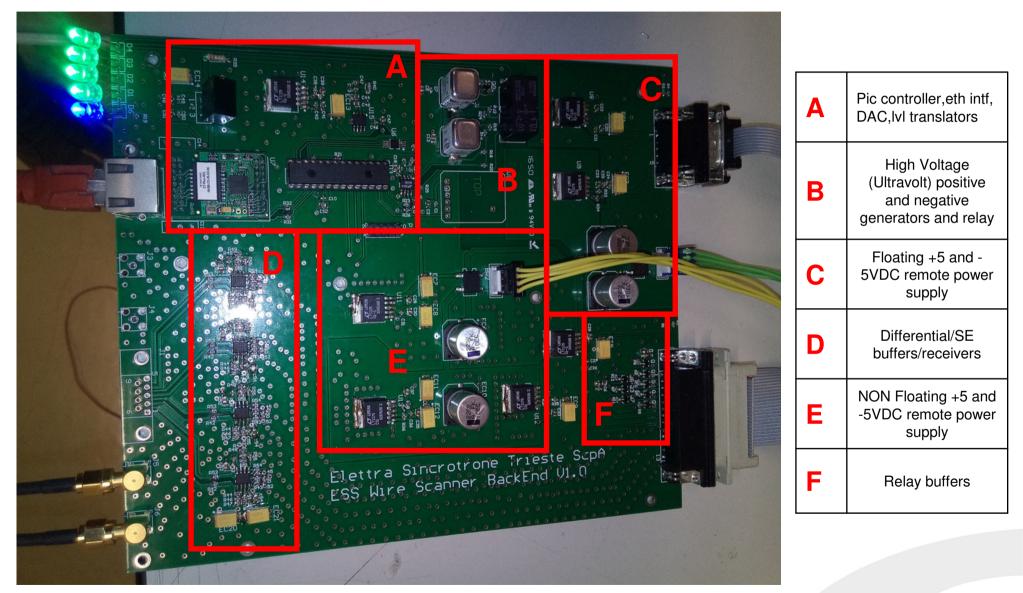

Elettra

Trieste

Sincrotrone













### **BackEnd in practice**







Raffaele De Monte, Apr 27, 2017







Input /outputs:

- 1 x DB9 : +-5VDC Floating power supply
- 1 x DB25: +-5VDC NON floating P.S., 8 relays outputs, 4 differential signal inputs
- 2 x 4pin header: 2x6.3VAC inputs (transformers)
- 4 x SMA: Low impedance S.E. signal analog outputs
- 1 x DB9: Low impedance differential signal analog outputs
- 1 x RJ45: Ethernet communication port
- 1 x 5+5 header: PIC programming connector
- 1 x Blue LED: uController activity
- 4 x Green Led: +5V/-5Vfloat, +5V/-5Vnonfloat power return from AFE (off if AFE not connected)



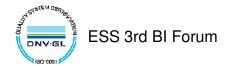
11





#### Simple command protocol:

All commands are in ASCII format with Carriage Return (cr) character termination ALL unrecognized commands return 'KOcr'


**SET FUNCTIONS**: all of the 'SET' commands return 'OK' string or 'KO' if wrong parameter

SetVoltage: (integer) Sets the bias voltage: the command starts a *procedure* that sets the DAC <u>until</u> the desired value is reached: the DAC has to be set in +- 10% of the theoretical set value. If > of 10% a error flag is set.

**SV:voltage** (from -100 to +200)

SetBit (8BIT 0-255) : sets the 8 bits that controls gain and test input current SB:number

Set Pulse for wire test (time): Sets all of the relays in a condition to read the reference current for a limited time expressed in microseconds, then revert all back **SP:number** 

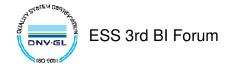


Raffaele De Monte, Apr 27, 2017







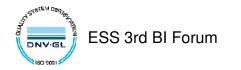

**READ FUNCTIONS**: all of the 'Read' commands returns ascci value terminated by a CR

```
Read Voltage (returns from -100 to +200) RV?
```

```
Read Bits (returns 0-255) RB?
```

```
READ TEMPERATURE (returns da 0 a 100) Only for SCINT version RT?
```

```
READ STATUS: it returns a string:
SETVOLTAGE:READVOLTAGE:BITS:SWVERSION:SWTYPE:RMF:COUNTER
where:
SWVERSION : number 1 - 0xFFFF
SWTYPE : 1 = WS 5=SCINT
RMF : 'R' if Running, 'M' if Moving, 'F' if Fault
COUNTER : loop counter (WATCHDOG purpose)
RS?
```




DHEAS 180





- 0.5A 3.3V DC-DC converter (powering Ethernet interface) vulnerability : solved changing with a 1A version
- Ripple noise in HV (~200mV pkpk ~10KHz): solved adding HV capacitor (4.7uF 250VDC)
- Buffer Power supply (on +5VDC) fail on power up due to shifting on negative at power off because of high capacitors: solved adding resistors to discharge fast and equally the capacitors.
- Poor precision in high voltage generator: a readback/set function has been implemented in the PIC software to reach the desired value with a single command. An asyncronous system has been implemented.
- The output signal is monopolar 0-5V. The ADC from Struck board accept +-1VDC. Solved putting a 50ohm attenuator (loosing 1 of the 16 bits..)







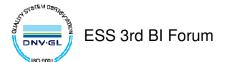
### WS Wire Integrity Check



#### Command SENT via ethernet: SP:1500

| Agilent Technologies MON APR 24 09:44:39 2017 |          |                  |   |               |       |        |           |         | 39 2017      |
|-----------------------------------------------|----------|------------------|---|---------------|-------|--------|-----------|---------|--------------|
| <b>1</b> 500 <b>%</b> /                       | 2 2.00V/ | ′ <mark>3</mark> | 4 | $\rightarrow$ | 8.200 | 500.0% | / Trig'd? | <u></u> | 556 <b>0</b> |
|                                               |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               | r     |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
| ¥ <u></u>                                     |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
| _                                             |          |                  |   |               |       |        |           |         |              |
| 2                                             |          |                  |   |               |       |        |           |         |              |
|                                               |          |                  |   |               |       |        |           |         |              |
| Edge Trigger                                  | Menu     |                  |   |               |       |        |           |         |              |
| Source                                        |          | Slope            | 1 |               |       |        |           |         |              |
| 2                                             |          | f                |   |               |       |        |           |         |              |

Result with intact wire

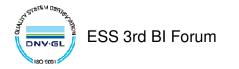

 Agilent Technologies
 MON APR 24 09:45:37 2017

 50007/
 2.00V/
 2.00V/
 2.00V/
 33.37

 Image: Constraint of the straint of t

Result with broken wire

Set Pulse for wire test (time): Sets all of the relays in a condition to read the reference current for a limited time expressed in microseconds, then revert all back






# Conclusions



- The Back End prototype PCB has been implemented
- The full functionality of the Back End has been tested
- The full functionality of the Back End connected to te Front End has been tested
- The firmware for the PIC uController is running in 'beta' version
- The system is ready to be connected to the uTCA acquisition crate





## "Funny" Triaxial connectors





## Specify if **<u>2</u> or <u>3</u> lug !**

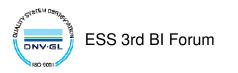








<mark>Elettra</mark> Sincrotrone Trieste



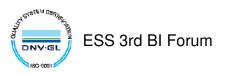

www.elettra.eu

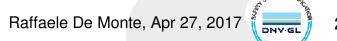


### SPARE SLIDES









19



# WSAS simplified system laboratory test bench







20