

REMINDER:

SOFTWARE CORRECTION

R. Wanzenberg, Nonlinear Motion of a Point Charge in the 3D Space Charge Field of a Gaussian Bunch.

A Gaussian bunch with total charge Q_b is moving with the velocity v_b along the z-axis of the laboratory frame K. The electric field of the bunch is calculated in the comoving frame and transformed into an electric and magnetic field in the laboratory frame K where the Lorentz-Force on a point charge Q_0 is calculated.

CODES:			
MATLAB (C. Thomas)	C++ (translation of the MATLAB co	ode)	
SIMULATION STEPS:			
a single electron (or ion) is created in the ce	enter of the IPM: x= Gaus $(0, \sigma_x)$ y= Gaus $(0, \sigma_y)$ z = Unif(-2.5 mm, 2.5 mm)	•	↓ 10 cm
in a first moment it is assumed that at creati	ion time the electron (or ion) is at rest		
a proton bunch of total charge Q = 1.7 e^{-10}	⁰ C and kinetic energy E_p is considered		
a time step <i>dt</i> is chosen by the program			
the displacement dx of the electron (or ion) is calculated by solving the motion equation (adaptive Runge Kutta Fehlberg method)		-	
another time step <i>dt</i> is chosen by the program	m		
the displacement dx of the electron (or ion) (adaptive Runge Kutta Fehlberg method)	is calculated by solving the motion equation		
time displacement time displacemen	ıt	المر	
when the y position of the electron (or ion) y	$l \geq y_{collection \ plate}$, the simulation stops		
at every <i>dt</i> passed, the following variable value fields info (lab and comoving frame)	ues were saved: t, x, y, z, v _x , v _y , v _z , a _x , a _y , a _z ,		
t and y are plotted and fitted with a spline to reached	b find the time \mathbf{t}_{stop} when the electrode was		
t and x are plotted and fitted with a spline.	x(t _{stop}) is extracted		
the procedure is iterated N times, to reach a	statistical uncertainty of (100 $\frac{\sqrt{N}}{N}$) %		

Correction code

3rd ESS Beam Diagnostics Forum

DE LA RECHERCHE À L'INDUSTR

ESS PROTON BEAM PARAMETERS:

- Energy : [90,2000] MeV
- Current peak: $62.5 \text{ mA} = 0.0625 \times 6.242 \times 10^{18} \text{ p/s}$
- Pulse length: 2.86 ms
- Pulse frequency: 14 Hz (duty cycle 4%)
- Bunch frequency: 352.21 MHz

IPM GAS PARAMETERS:

- Composition : H₂ (79%), CO (10%), CO₂ (10%), N₂ (1%) [source: ESS vacuum group]
- Pressure: 10⁻⁹ mbar

CHOSEN CODE PARAMETERS:

 Proton energies:
 90 MeV, 200 MeV, 1 GeV

 Proton bunch intensity:
 62.5 mA/ 352.21 MHz = 1.1 10⁺⁹ p/bunch

 $\sigma_x = 0.5$ mm, 1.4 mm, 2.3 mm, 3.2 mm, 4.1 mm, 5 mm, 10 mm

- $\sigma_y = 0.5 \text{ mm}, 1.4 \text{ mm}, 2.3 \text{ mm}, 3.2 \text{ mm}, 4.1 \text{ mm}, 5 \text{ mm}, 10 \text{ mm}$
- $\sigma_z = 0.75$ mm, 2.0 mm, 10 mm
- Ionization products: e^- , H_2^+ , N_2^+ , CO^+ , CO_2^+
- E: 50 kV/m, 100 kV/m, 200 kV/m, 600 kV/m, 1000 kV/m

LEVEL 4 REQUIRERMENTS:

- The transvers beam profile shall be measured with a total measurement error in the RMS extension of the beam of less than \pm 10%.
- [Space resolution, time tesolution...] 3rd ESS Beam Diagnostics Forum

71.4 ms

26th-27th April 2017, Trieste

2.86 ms

 \overline{E} = 300 kV/m, σ_{y_1} = 3.2 mm, σ_{z_1} = 2.0 mm

3rd ESS Beam Diagnostics Forum

 $E_p = 90 \text{ MeV}, \sigma_v = 3.2 \text{ mm}, \sigma_z = 2.0 \text{ mm}$

3rd ESS Beam Diagnostics Forum

$E_p = 90 \text{ MeV}, \sigma_{x_i} = 0.5 \text{ mm}, \sigma_{z_i} = 2.0 \text{ mm}$

3rd ESS Beam Diagnostics Forum

SIMULATION STEPS (Slide 9):

in a first moment it is assumed that at creation time the electron (or ion) is at rest

 $\label{eq:check} \begin{array}{l} \textbf{Check assumption validity with Garfield} ++ (toolkit for simulations of particle detectors with gas and semi-conductors as sensitive medium) \end{array}$

Electron speed distribution at creation

3rd ESS Beam Diagnostics Forum

✓ GARFIELD++ provides different momenta distribution of the primary electrons for different incident proton beam energies and electric fields (v_e , θ_e , ϕ_e).

ELECTRONS:

- E_p = 90 MeV
- $\blacksquare \ \overline{E} = 300 \text{ kV/m}$
- I $z_{i_{el}}$ uniformly \in [-5 cm, 5 cm]
- $\sigma_{\mathbf{x}_{i_{el}}} = \sigma_{\mathbf{y}_{i_{el}}} = 0.5 \text{ mm, } 1.4 \text{ mm,} \\ 3.2 \text{ mm, } 4.1 \text{ mm,} \\ 5.0 \text{ mm, } 10.0 \text{ mm}$
- $\sigma_{z_{i_{el}}} = 0.75$ mm, 2.0 mm, 10.0 mm
- v_{iel} from GARFIELD++
- (θ , ϕ) from GARFIELD++

IONIZED MOLECULES:

- E_p = 90 MeV
- $\blacksquare \ \overline{E} = 300 \text{ kV/m}$
- $x_{i_{ion}} = f(\sigma_{x_{i_{ion}}}), y_{i_{ion}} = f(\sigma_{y_{i_{ion}}})$
- $z_{i_{ion}}$ uniformly \in [-5 cm, 5 cm]
- $\begin{tabular}{ll} $\sigma_{x_{i_{ion}}} = \sigma_{y_{i_{ion}}} = 0.5 \mbox{ mm, } 1.4 \mbox{ mm, } \\ $3.2 \mbox{ mm, } 4.1 \mbox{ mm, } \\ $5.0 \mbox{ mm, } 10.0 \mbox{ mm} \end{tabular} \end{tabular} \end{tabular}$

• $\sigma_{z_{i_{ion}}} = 0.75$ mm, 2.0 mm, 10.0 mm

- v_{iion} assuming
 a) v_{ielectron} · m_{electron} = v_{iion} · m_{ion}
 b)Maxwellian energy distribution
- (θ , ϕ) from GARFIELD++

The results from the IPM simulation code with the above initial conditions show:

- the space charge effect is lower for higher proton energies
- the space charge effect is higher for lower beam sizes (smaller than nominal conditions)
- ionized molecules are less affected by space charge effects than electrons
- the initial momentum with which particles are created can be neglected for ionized molecules, but not for electrons
- if electrons are detected and the beam sizes are $\sigma_{x_i} = \sigma_{x_i} = 3.2$ mm and $\sigma_{z_i} = 2.0$ mm an error of about 35% is obtained (requirements not met)
- if electrons are detected and the beam size is smaller than 2 mm, the error on the beam width is higher than 35% (requirements not met)
- if ionized molecules are detected, in nominal conditions, not more than 4% error on the beam width is obtained
- as for ionized molecules here above H₂⁺ was meant. If the totality of the ionized molecules is considered with the appropriate weight, the previously given error improve by few %.

DE LA RECHERCHE À L'INDUSTRI

BACKUP SLIDES

3rd ESS Beam Diagnostics Forum

26th-27th April 2017, Trieste

Results: heavier ion comparison

Remarks:

 $m_{N_2} \approx m_{CO}$ heavier particle = smaller Δx

Ion speed distribution at creation

