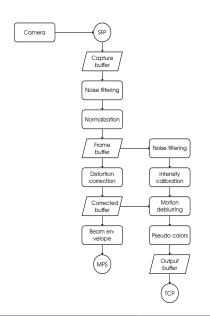
Target Imaging System - Electronics development

David Michael Bang¹ Ole Myren Røhne¹

1 / 27

- Functional requirements
- System architecture
- 3 Prototyping work
- 4 Toward the CDR

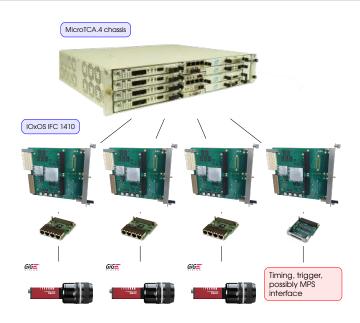


Functional requirements

Preprocessing			
Noise removal	Median filtering	tbd	tbd
Dead/hot pixels interpolation	Background image can be used	yes	tbd
Vignetting correction		yes	tbd
Calibration and correction			
Geometrical distortion correction	Static look-up tables	yes	yes
Motion blurring	Subtracting constant offset might be sufficient	tbd	tbd
Normalization to beam current	Not clear if best strategy (makes IMG dependent BCM)	tbd	tbd
Correction for temperature (coating light yield)	Look-up table from test results.	tbd	tbd
Parameter extraction			
Centroid position		yes	yes
Peak density	Default avering area 1 x 1 cm2	yes	yes
Percentage outside defined footprints	Static rectangles: 99%, 99.9%, 99.99%.	yes	yes
Position of fiducials	Fast and slow changes in geometry	tbd	n/a
Histogram of actual beam, iso-curves	Might not be needed, see percentage outside defined footprint	tbd	n/a
Presentation			
Background subtract	Background frame stored on request	yes	tbd
Image display, 14 fps video	Including all corrections back to physical beam	yes	n/a
Beam diagnostic pulse	Might include non-standard processing	fbd	n/a
Functionality		SW	FPG

 $(From \ \texttt{https://confluence.esss.lu.se/display/BIG/Software+and+FPGA+functionality+summary})$

Deterministic latency path (FPGA)


- Noise filtering
- Normalization
- Pixel mapping
- Distortion correction
- Apply critical limits

Medium latency path (CPU/GPGPU)

- Intensity cross-calibration
- Motion de-blurring
- Apply pseudo colors
- Video stream codec

Electronics system

Front-end components

Camera

- PBW and TW cameras are similar: friendly environment
- TD: harsher environment
- Trigger synchronization, 1 ms or better?
- Frame rate, $n \times 14$ fps
- Sensor size, is 1/3-format enough?
- Pixel resolution, few MPix enough
- Digitization, 14-16 bits for dynamic range

In-hand: Allied Vision Manta G-125 GigE/PoE

FMC GigE Frame grabber/splitter

- GigE Vision, just needs a PHY-implementation
- Cameralink FMC also exists
- (assuming USB is not industrial-grade)

E.g. FMC103 - FMC Quad 10/100/1000 GbE Module

Back-end components

AMC IOXOS IFC 1410

- FPGA: Xilinx Kintex UltraScale KU040/KU060
- CPU: NXP QorlQ T2081 Quad core Power/AltiVec @ 1.8 GHz
- PCle: Data stream to CPU-board

MicroTCA.4 chassis

- Power supply, possibly redunant
- MicroTCA Carrier Hub and CPU
- Rear Transition Module, for synchronous signals

Services infrastructure

- Power, cooling networking
- Remote power-up, booting
- Data recording/storage

Software algorithms platform

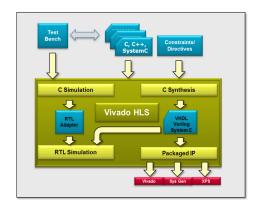
Open source software library

- Targeting computer vision and machine learning
- Video/imaging framework and 2500 algoritms
- Implemented in C++/STL, also on GPU (CUDA and OpenCL)
- Easily usable from a wide range of languages including Python

Benefits for Target Imaging

- Xilinx Vivado HLS video processing cores refers to OpenCV
- EPICS areaDetector plugins already exists

8 / 27


What more can you ask?

DMB, OMR (UiO) Elecronics&Processing 3rd Beam Diagnonstics Forum

Hardware algorithms environment

Xilinx Vivado HLS

- Write algorithms in C language
- Synthesises through RTL-representation
- Integrates with lower-level (VHDL/Verilog) IP
- RTL-level simulation, resources utilisation, algorithm verification

9 / 27

Prototype platform

Diailent Zybo Zyna-7000 ARM/FPGA SoC Trainer Board

Key features

- Xilinx Zynq-7000 (XC7Z010-1CLG400C)
- 512 MB x32 DDR3 w/ 1050Mbps bandwidth
- 16-bits per pixel VGA output port
- High-bandwith peripheral controllers: 1G Ethernet, USB 2.0, SDIO

Xilinx ZYNQ 7000 XC7Z010

- 28,000 logic cells
- 240 KB Block RAM
- 650 MHz dual-core Cortex~A9 processor

10 / 27

Prototype platform (1)

Diailent Zvbo Zvna-7000 ARM/FPGA SoC Trainer Board

Workflow

- Serial transmission of test image on UART from PC to ZYNQ stored on DRAM
- Bare metal program running on ARM used for controlling and configuring FPGA IP cores
- VDMA creates a video stream from stored test image
- VGA output for displaying processed video stream
- CPU/FPGA interface is AXI and VDMA/AXI-stream

Test Frame 1292x964

$$\begin{split} C_x &= \frac{\sum_x \sum_y x P(x,y)}{\sum_x \sum_y P(x,y)} \\ C_y &= \frac{\sum_x \sum_y y P(x,y)}{\sum_x \sum_y P(x,y)} \\ RMS_C_x &= \sqrt{\frac{\sum_x \sum_y x^2 P(x,y)}{\sum_x \sum_y P(x,y)}} - C_x^2 \\ RMS_C_y &= \sqrt{\frac{\sum_x \sum_y y^2 P(x,y)}{\sum_x \sum_y P(x,y)}} - C_y^2 \end{split}$$


```
function (cog X, cog Y, rms_X) rms_X) = E200_im_cog_rms_XY(myimg, cut_back);
if nargin < 2
out_back = 0; t extra background cut needed to avoid centroid bias
end tif

myimg (myimg < cut_back) = 0;

X_hist=sum(myimg,1);
Y_hist=sum(myimg,2);

X=lisize(myimg,2);

X=lisize(myimg,2);

X=lisize(myimg,2);

X=lisize(myimg,1);
oug_N=mu(X:X_hist)/sum(X_hist);
oug_N=mu(X:X_hist)/sum(Y_hist);

rms_X = sqrt( sum((X-cog_X).^2.*X_hist)./sum(X_hist) );

rms_Y = sqrt( sum((Y-cog_Y).^2.*Y_hist)./sum(Y_hist) );
</pre>
```

Matlab Implementation

Cx = 641.7417

Cy = 462.6578

 $RMS_Cx = 169.8422$

RMS_Cy = 149.2480

FPGA Implementation

```
LOOP0: for (int n = 1; n <= 964; n++){
        for (int m = 1: m <= 1292: m++)
            #pragma HLS PIPELINE
            video in >> Apixel:
            video out << Apixel;
            p sum x2 += m*m*Apixel.data;
            p sum x1 += m*Apixel.data;
            p sum y2 += n*n*Apixel.data;
            p sum v1 += n*Apixel.data;
            p sum += Apixel.data:
mp_sum_x1 = (float) (p_sum_x1)/(p_sum);
mp sum y1 = (float) (p sum y1)/(p sum);
mp sum x2 = (float) (p sum <math>x2)/(p sum);
mp_sum_y2 = (float) (p_sum_y2)/(p_sum);
*p_sum_out = (float)p_sum;
*Cog_X = mp_sum_x1;
*Cog Y = mp sum y1;
*RMS_X = sqrtf((mp_sum_x2 - (mp_sum_x1)*(mp_sum_x1)));
*RMS Y = sqrtf((mp sum y2 - (mp sum y1)*(mp sum y1)));
```

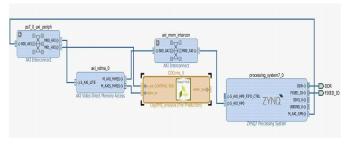
Termite 32 (by Computhbase)

COM13 115200 box, 6912 no handshake Settings Cear About Cote

Local # Renote # Settings Cear About Cote

Cx = 641.741699

Cy = 462.687837


RMS_X = 169.842026

RMS_Y = 149.248016

Snippet of Vivado HLS C-code

FPGA Implementation

Vivado: Block diagram with HLS generated Centroid Position IP showing interface connection only

Vivado HLS Report Comparison

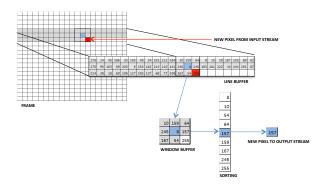
solution1: xc7z010clg400-1 solution2: xcku040-sfva784-1-i solution3: xcku040-fbva676-3-e

Timing (ns)

Clock		solutionl	solution2	solution3
ap_clk	Target	10.00	10.00	10.00
	Estimated	8.22	8.29	8.65

Resource Usage

	solutionl	solution2	solution3
BRAM_18K	0	0	0
DSP48E	17	17	17
FF	5525	4017	3576
LUT	8060	6043	6007


Latency (clock cycles)

		solutionl	solution2	solution3
Latency	min	1245536	1245520	1245514
	max	1245536	1245520	1245514
Interval	min	1245494	1245493	1245493
	max	1245494	1245493	1245493

Resolution = 1292x964 = 1245488 pixels

Median filter

Median filter

Median filter

Vivado HLS Report Comparison

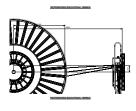
 $\textbf{solution1:}\ xc7z010c1g400-1$

solution2: xcku040-sfva784-3-e solution3: xcku040-sfva784-1-i

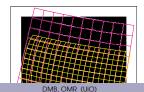
Timing (ns)

Clock		solutionl	solution2	solution3
ap_clk	Target	10.00	10.00	10.00
	Estimated	8.73	8.39	8.05

Resource Usage


	solutionl	solution2	solution3
BRAM_18K	2	2	2
DSP48E	4	4	4
FF	651	545	586
LUT	1051	1048	1051

Latency (clock cycles)


		solutionl	solution2	solution3
Latency	min	8	3	8
	max	1245500	1245494	1245499
Interval	min	9	4	9
	max	1245501	1245495	1245500

Resolution = 1292x964 = 1245488 pixels

Beam projection

- Rectilinear beam system
- Doubly-curved outer surface wheel
- Convex hull of torus
- Variable depth object

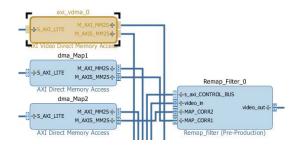
Camera matrix

- Pinhole projection
- Off-axis wrt variable depth
- Closed solution exists

Optical distortion

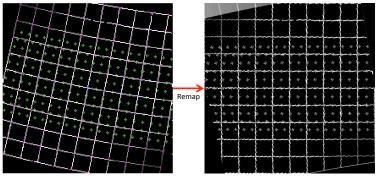
- Trivial image rotation
- Some barrel distortion
- Center-of-correction well outside frame

May use the Remap function in HLS video library


```
hls::AXIvideo2Mat(video_in, img_0);
hls::AXIvideo2Mat(MAP_CORRI, map_1);
hls::AXIvideo2Mat(MAP_CORRI, map_2);
hls::Reapo(228)(img_0, img_1, map_1, map_2, HLS_INTER_LINEAR);
hls::Mat2AXIvideo(img_1, video_out);
```

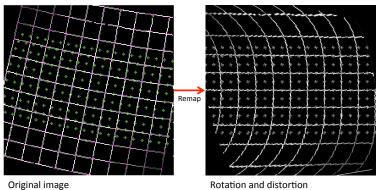
Remaps the source image to the destination image according to the given remapping

Contains a linebuffer that buffers the required amount of rows needed for vertical displacement


22 / 27

C/RTL cosimulation

Image resolution: 585x585 LineBuffer: 128 Lines


Original image

Rotation

C/RTL cosimulation

Image resolution: 585x585 LineBuffer: 128 Lines

Rotation and distortion correction

Vivado HLS Report Comparison

solution1: xc7z010clg400-1 solution2: xcku040-sfva784-1-i solution3: xcku040-sfva784-3-e

Timing (ns)

Clock		solutionl	solution2	solution3
ap_clk	Target	10.00	10.00	10.00
	Estimated	9.40	9.58	8.75

Resource Usage

	solutionl	solution2	solution3
BRAM_18K	66	42	42
DSP48E	10	10	10
FF	1658	1531	1453
LUT	2130	2128	2128

Latency (clock cycles)

		solutionl	solution2	solution3
Latency	min	346323	346323	346323
	max	386417	386417	385119
Interval	min	346324	346324	346324
	max	386414	386414	385116

Resolution = 585x585 = 342225 pixels

Toward the CDR

Timeframe: 2017-Q3 - end of September

- Functional requirements
- Functional prototype
- Hardware demonstrator
- Implementation plan

