

nBLM System Status

L. Segui for the nBLM CEA group 3rd ESS Beam Diagnostics Forum 26/04/2017

OUTLINE

- I. Introduction
- II. Prototypes
- III. Detector & FEE
- IV. Gas system & Integration
- V. DAQ & Control System
- VI. MonteCarlo studies of response to ESS scenarios
- VII. Conclusions and Outlook

INTRODUCTION

nBLM → neutron Beam Loss Monitoring system based on the detection of fast neutrons with Micromegas detectors. + low sensitivity to gammas and X-Rays.

- Objective: Protection + monitoring normal operation
 - ✓ To maintain accelerator activation at a low level (loss << 1 W/m)
 - ✓ For fine beam tuning purpose, particularly for high beam intensity
 - ✓ Machine Protection
- Project to deliver and commission 42 modules by April 2019
- To be installed mainly in the DTL region: E_{proton} 3.6 90 MeV
 - Some will be tested also at higher energies

Why new BLM?

- Complementary to the other ESS BLM systems
- At low beam energy (E_{proton}>3 MeV), only neutrons and photons can escape beam pipe
- Photons :
 - X-rays and γ's are highly produced by the RFQ as well as superconductive cavities
 - Impossible to distinguish contributions coming from beam than RF...
- Neutrons :
 - Thermal neutrons: no loss locations
 - Fast neutrons: good for beam loss representation

INTRODUCTION: Schedule

PROTOTYPES

> Each nBLM module consist on two types of detectors: slow and fast

SLOW

- \Box (n, α) ¹⁰B reaction
- Detection of fast neutrons after moderation in polyethylene (~4cm)
- \Box More efficient, 4π , but slower response

FAST

- Recoil protons produced by neutrons in polypropylene
- □ High flux high energy n's (>0.1 MeV)
- ☐ Faster response

PROTOTYPES

Each nBLM module consist on two types of detectors: slow and fast

SLOW

- \Box (n, α) ¹⁰B reaction
- Detection of fast neutrons after moderation in polyethylene (~4cm)
- \Box More efficient, 4π , but slower response

FAST

- Recoil protons produced by neutrons in polypropylene
- ☐ High flux high energy n's (>0.1 MeV)
- Faster response

 \geq

PROTOTYPES

Each nBLM module consist on two types of detectors: slow and fast

SLOW

- \Box (n, α) ¹⁰B reaction
- Detection of fast neutrons after
 - moderation in polyethylene (~4cm)
- **D** More efficient, 4π , but slower response

FAST

- Recoil protons produced by neutrons in polypropylene
- □ High flux high energy n's (>0.1 MeV)
- Faster response

Different thickness of polyethylene can be added

Detector size ~30x30x30cm3 ~3kg Easy to transport 26/04/2017 – BI Forum Fast module integrated in the slow

Both can be tested separated

Laura Segui

- Bulk Micromegas
- Single anode vs 4 pads
- First two prototypes manufactured at CERN
- Rest and production will be manufactured at the "Labo Bulk" at SEDI/CEA-Saclay

- Micromegas: Multi-Pattern Gaseous Detector, invented in 1995 at CEA Saclay¹
- Parallel plate detector with a strengthened thin mesh dividing the gas volume in 2 parts:
 Drift region (1 to 10 mm) → E ≈ 100 V/mm
 Amplification region (30 to 100 µm) → E ≈ 10⁵ V/mm

¹ Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, "Micromegas: A high-granularity position sensitive gaseous detector for high particleflux environments", Nuc. Instrum. Meth. A 376 (1996) 29.

- Bulk Micromegas
 - Single anode vs 4 pads
- First two prototypes manufactured at CERN
- Rest and production will be manufactured at the "Labo Bulk" at SEDI/CEA-Saclay

Very similar design for the nBLM

Coaxial connectors for analog signals

- SMA Connectors for :
 - Signals
 - Low voltage

- Bulk Micromegas
- Single anode vs 4 pads
- First two prototypes manufactured at CERN
- Rest and production will be manufactured at the "Labo Bulk" at SEDI/CEA-Saclay

PCB Design:

Front-end electronics for nBLM \rightarrow Design by Philippe Legou

FAMMAS front-end module (Fast Amplifier Module for Micromegas ApplicationS)

In few figures ...

- Power supply : +5V 5V
- Consumption \cong 50 mW
- Input: positive or negative
- *Noise: 600 μV rms*
- Rise time : < 1ns
- weight : 4g
- Size: 22 x 20 x 5 mm
- Reliability

Cables for :

- Signals (SMA)
- Low voltage (SMA)
- High Voltage (SHV) (2xdetector)
- + patch pannels at both ends

42 modules \rightarrow 84 detectors \rightarrow min ~250 cables Lenght between racks and DTLs ~50m

Gas System

- Gas: He + 10% CO₂
- Flow: ~ 5 l/h, in recirculation
- P ~ 1 atm
- Volume/detector ~ 0.25 l
- Leak tight and low outgassing
- Gas bottle storage: 6-12 rack premix
 - ~200 bar/bottle, 50 l \rightarrow
 - 2 IN/2 OUT lines (1 in use, 1 spare)
 - Outside gallery
- From gas bottle to gas rack to patch panel to tunnel
 - Distribute in 5 lines \rightarrow one per DTL, in parallel
 - 5 IN/5 OUT Lines going to tunnel (+ spares)
 - Electrovalve in/out in Klystron gallery
 - Isolate system
 - Flowmeter in/out in Klystron gallery
 - Leak monitoring
- Gas in serial for detectors in DTL

Laura Segui

Gas System

Designed by Stephan Aune

area,

DAQ & Control System

Gas System

Françoise Gougnaud and her team

- PLC system
- Experience for other experiments
- Fit in rack
- Communication to EPICS

Control System

Françoise Gougnaud and Yannick Mariette and Victor Nadot

- In Nov.2016 test a μTCA crate sent to CEA
- Decision about ADC card and IFC made in April
 - ADC 3111 FMC Mezzanine Card, IOxOS: 8 channels, 250 Mps,
 - 2 controlled by a FPGA → can group detector per DTL, easier to do coincidences
 - IFC 1410
 - Start testing system in June → full system will be received in October
- Definition of interface between µTCA and Control System on-going
- For HV \rightarrow CAEN A-7030, 48 channels
- And mainstream SY-4527B crate
 - 16 boards per crate

Already supported by ICS

Laura Segui

26/04/2017 – BI Forum

PLC system – gas controller

RESPONSE TO ESS SCENARIOS

- ESS scenarios received and integrated in the nBLM simulation framework based on Geant4
- Simulated accidental losses:
 - Known number of protons at fix energy in a point
 - Used also to scale to the case of 1% 1W/m in 14H7
- nBLM placed at different locations around the DTLs
- Frequency in DTL shorter than the time response of the slow detector (100% events in \sim 180 µs)
 - Bunches will start overlapping in case of accidents
 - Calculate how many counts lost in 1st µs
 - For normal operation used a peak count rate

Sketch of the

RESPONSE TO ESS SCENARIOS

Accidents, Slow Module , on top

RESPONSE TO ESS SCENARIOS

Accidents, Slow Module , on top

Accidents vs 1% 1W/m, Slow Module , on top

26/04/2017 – BI Forum

Accidents detected in the fast module

 \rightarrow Up to 80c/bunch \rightarrow 50c in ~3ns

ESS input	nBLM detector	c/bunch	c/µs	100 (%) 90 st 80
sim2-0-DTL	det3	0.060 ± 0.007	22.44 ± 2.54	
Mid DTL1				g 50
sim2-1-DTL	det3	0.030 ± 0.005	10.65 ± 2.09	
¾ DTL1	uets			
sim2-8-DTL	det1	52.70 ± 1.69	18569.94 ± 594.71	
Start DTL5	det2	1.41 ± 0.28	495.20 ± 97.12	Time [ns]
sim2-11-DTL	det3	0.93 ± 0.16	326.50 ± 56.00	middle of DTL-5
End DTL5	det4	5.51 ± 0.39	1939.82 ± 136.49	
sim2-12-DTL	det3	0.88 ± 0.21	311.14 ± 73.34	
End DTL5	det4	3.83 ± 4.34	1348.27 ± 152.66	
sim2-13-DTL	det3	82.28 ± 2.01	285970.55 ± 707.65	
Mid DTL5	det4	0.38 ± 0.13	132.85 ± 46.97	

OUTLOOK

- Since last BI Forum
 - ✓ Finish MonteCarlo studies of geometry
 - ✓ Study response under ESS scenarios
 - ✓ Designed of first prototype
 - ✓ Received mechanics, Micromegas in a couple of weeks
 - ✓ First gas system design
 - ✓ Selection of Control System elements
 - Response range between few c/s in normal operation to few GHz in case of an accident (at high energy regions)

PDR1.1

- In next month \rightarrow start prototype tests
- Definition of cables specifications and gas pipes on-going
 - Discussed installation points and integration
- Defining interface between FPGA and Control system
- PDR1.2 in June

Laura Segui

THANK YOU!

BACKUP

The data from previous slide in table... Slow module

Losses in DTL-1

Losses in DTL-5

ESS input	nBLM	1% 1W/m c/ms (kHz)	Accidents c in the first μs (MHz)		ESS input	nBLM	1% 1W/m c/ms (kHz)	Accidents c in the first μs (GHz)
Sim2-0 Mid DTL-1	det1				Sim2-8 Start DTL5	det1	55.25 ± 0.34	26.83 ± 0.16
	det2	0.21 ± 0.01	16.70 ± 4.09			det2	16.14 ± 0.19	0.59 ± 0.08
	det3	0.92 ± 0.01	59.81 ± 7.73			det3	8.10 ± 0.13	0.20 ± 0.04
	det4	0.396 ± 0.003	13.82 ± 3.72			det4	5.11 ± 0.10	0.06 ± 0.002
Sim2-1 @ ¾ DTL-1	det1				Sim2-11 End DTL-5	det1	5.17 ± 0.10	0.14 ± 0.04
	det2	0.098 ± 0.004	7.20 ± 2.68			det2	5.53 ± 0.10	0.14 ± 0.04
	det3	0.33 ± 0.01	28.60 ± 5.35			det3	9.87 ± 0.13	0.26 ± 0.05
	det4	0.62 ± 0.01	80.76 ± 8.99			det4	19.34 ± 0.18	0.75 ± 0.09
Sim2-3 Mid DTL-1 (-90°)	det1				Sim2-13 Mid DTL-5	det1	9.56 ± 0.13	0.25 ± 0.05
	det2	0.195 ± 0.003	8.21 ± 2.87			det2	14.92 ± 0.50	0.45 ± 0.07
	det3	0.74 ± 0.01	54.28 ± 7.37			det3	67.72 ± 0.77	51.79 ± 0.23
	det4	0.364 ± 0.004	16.64 ± 4.08			det4	13.87 ± 0.35	0.49 ± 0.07

RESPONSE TO BI-ESS SCENARIOS \rightarrow ACCIDENTAL LOSSES or SAFETY OBJECTIVE

Time Response and rate

- Time response is calculated as before
- In all cases we have few % of events below 1 µs
 - But we have more than one bunch in 1 μs
- In the DTL region ESS operates at 352 MHz \rightarrow freq = 2.84 ns
 - In 1 μ s \rightarrow 353 bunches
- They will start overlapping in the nBLM, so after 2.84 ns events from the second bunch will start arriving

Strategy

- Histogram with the c/bunch in $1 \mu s$ with a binning of 2.84ns - Add the previous bins together to make a new cumulative histogram \rightarrow Last bin corresponds to neutrons detected in the first $1 \mu s$

Placing the detectors on the lateral of accelerator

- Repeat scenarios accidents at mid DTL-1 and DTL-5 placing the detectors on the lateral
- Lower rate in the case of lateral detectors
 - Factor 0.5 to factor 2 or 6 at location of lost
 - Could be because direction of lost

"Slow" Modules

"Fast" Module

Placing the detectors between the tanks

- Sensitivity if the detector close to the loss
 → 1MHz -- 5GHz
- Can also help to identify location of loss

	nBLM detector	Bunches	Counts	o /burob	c/µs
ESS Input	between	simulated	detected	c/bunch	(MHz)
sim2-0-DTL	DTLs 1-2	4315.59	16 ± 4	0.004 ± 0.001	1.36 ± 0.34
(mid DTL-1)	DTLs 2-3	4315.59	2 ± 1	Low stats	Low stats
sim2-1-DTL	DTLs 1-2	429.69	119 ± 11	0.28 ± 0.03	97.52 ± 8.94
(¾ DTL-1)	DTLs 2-3	429.69	2 ± 1	Low stats	Low stats
sim2-11-DTL (end DTL-5)	End of 5	9.17	22 ± 5	2.40 ± 0.51	845.07 ± 180.17
sim2-12-DTI	DTIs 4-5	10 19	2 + 1	Low stats	Low stats
(end DTL-5)	End of 5	25.46	381 ± 20	14.96 ± 0.77	5268.63 ± 269.92

Using MirroBor (borated rubber) instead of Cd as absorber in the slow module

Geometry studies:

- Isolethargic flux, 0.1 eV 100 MeV
- Different borated rubber thicknesses

In ESS scenarios (loss midle DTL-5)

 And with different borated rubber thicknesses

GEOMETRY DEFINITION THROUGH MC SIMULATIONS - RESULTS FIRST MODULE

Neutron Efficiency

10

Time response

 10^{3}

Energy deposited with threshold [keV]

 Gammas discriminated with 20-30 keV threshold

GEOMETRY DEFINITION THROUGH MC SIMULATIONS - RESULTS SECOND MODULE

Neutron efficiency

Initial neutrons from 0.1eV to 100 MeV

Time response: just ToF, detector immediate response

