

20-21/06/2017 – Workshop on fire protection for physics research facilities - FCC study collaboration, ESS

Evacuation modelling of the FCC facility

ENRICO RONCHI, Ph.D.

Department of Fire Safety Engineering Lund University, Sweden

enrico.ronchi@brand.lth.se

Outline

- The modelling approach in use
- From simple to advanced evacuation modelling
- Evacuation scenarios
- Overview of results

The approach in use

Underground physics research facilities can have unique features from an evacuation perspective

- Combination of complex areas and simple tunnels
- Need for PBD methods come from:
 - 1) the possibly large size of the facility
 - 2) the possible behavioural interactions among evacuees
 - 3) the egress components available
 - 4) the varying degree of complexity of the geometric layout

The approach in use

- Too simple models may not be able to capture complex behavioural issues
- Too complex models may be unnecessary for the simpler parts

IDENTIFICATION OF A NEW EVACUATION MODELLING WORKFLOW

SIMPLIFIED MODELLING + ADVANCED MODELLING

From simple to advanced evacuation modelling

From simple to advanced evacuation modelling

From simple to advanced evacuation modelling

Evacuation scenarios

Evacuation scenarios

Model inputs

Variable	value	
Length of the single arc	10 Km	
Max depth	400 m	
Number of people	50 (arc) + 150 (cavern)	
Transportation speed	20 Km/h	
Pre-evacuation times	60-120 s for cavern (98%); 180 s for movable platform (2%)	
Initial walking speed	1 0.9 m/s (this can be affected by smoke in the simplified model)	
Sections 63 sections of approx 160 m (due to firefighters operation), homogeneous distribution of people		

Evacuation scenarios

	Model inputs	Ground level
Ele	evators	value
Speed		4 m/s
Max acceleration		0.67 m/s2
Capacity		Max 35 people (conservative estimate from 38)
Open and closing time of the doors		e 15 s

Implicit representation of 1 elevator journey used for firefighters intervention (after 20 min)

Overview of results

Simulations

- Multiple simulations to account for variability of behaviours
- Convergence criteria based on functional analysis operators and evacuation times (TET, SD, ERD, EPC, SC), see Ronchi et al, 2013 with min 15 runs

Overview of results

Simulation results

Overview of results

Simulation results

- Evacuation completed in less than 40 min. Time is higher than original lift calculations because we accounted for the loss of one elevator journey (due to firefighter intervention)
- Quite rapid convergence of results (due to elevators)
- Results are mostly driven by the elevator journeys and waiting times in the lobby
- No high densities are reached in the lobby with the given configuration (dimensioning seems fine)

Acknowledgements

Silvia Arias, Lund University Saverio La Mendola, CERN

THANK YOU!

Email: Department of Fire Safety Engineering: <u>www.brand.lth.se</u>

enrico.ronchi@brand.lth.se

References

- Ingason, H., Li, Y. Z., & Lönnermark, A. (2015). Tunnel Fire Dynamics. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-2199-7
- Purser, D. A. (2008). Assessment of Hazards to Occupants from smoke, toxic gases and heat. In SFPE Handbook of Fire Protection Engineering (4th Edition) (pp. 2-96-2–193). Quincy, MA (USA): Di Nenno P. J.
- Ronchi, E., Reneke, P. A., & Peacock, R. D. (2014). A Method for the Analysis of Behavioural Uncertainty in Evacuation Modelling. *Fire Technology*, 50(6), 1545–1571. <u>https://doi.org/10.1007/s10694-013-0352-7</u>
- Ronchi, E., & La Mendola, S. (2016). Evacuation modelling for underground physics research facilities. *Department of Fire Safety Engineering, Lund University*.
- Ronchi, E. (2013). Testing the predictive capabilities of evacuation models for tunnel fire safety analysis. Safety Science, 59(0), 141–153. https://doi.org/10.1016/j.ssci.2013.05.008

