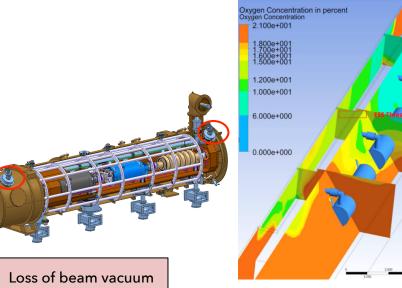
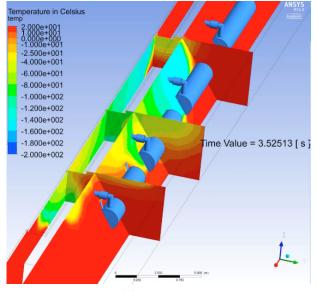
Overview of the Helium Collector


Elliptical Cryomodules Critical Design Review - April 3,4


EUROPEAN SPALLATION SOURCE

Main motivation

In Q4 2015, the ESS AD Safety Group with the help of the EIS Division investigated possible cold helium propagations in the tunnel for several credible failure scenarios.

Time /Value = 5.24748 [s]

Lowest attainable O2 concentration = 6%

Lowest attainable temperature = -135°C

A collection header for evacuation of cold helium vapour may reduce or eliminate Oxygen Deficiency Hazard (ODH) and personnel exposure to cold burns

Source: D.Phan and E.Lundh:**ESS ODH** concept and on-going safety study presented during "Cryogenic Safety Workshop at ESS" on 2016.02.10

History

ESS Cryogenic Safety Workshop - Feb. 2016 🦗 🗞 🐼 🐼 🕸 🕬

"Technical solutions to vent the helium coming out from the burst disks of the 2K helium vessel to a safe place should be investigated. Facilities like XFEL, Fermilab and ORNL only vent the vacuum vessel of cryogenic systems in the tunnel."

ESS Cryomodules Safety Review - June 2016 😻 🕅 🚾 🕯 🗰

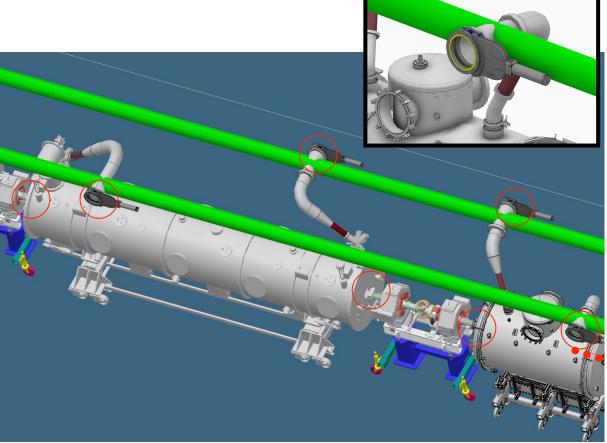
"Integrating in the tunnel a helium collector in order to discharge helium outside the tunnel is a very interesting solution in order to cope with the risk of ODH and cold burns to personnel in the vicinity of the cryomodules. The committee supports the continuation of this work with high priority, as well as the evaluation of the impact of this system on the cryomodule design and integration aspects in the tunnel. "

Main function and design constraints

Function

The helium collector is designed to be able to collect the helium released by the burst disks of the 2 K helium vessel of the cryomodules and vent it outside of the tunnel in order to prevent exposure of the personnel to helium releases during access to the tunnel (Beam OFF).

Design constraints


The helium collector shall be designed in such a way that the impact on the cryomodules design and operation (both elliptical and spoke) is very limited:

- Maximum allowable pressure of 1.9 bara at the outlet of the cryomodules' burst disks.
- The helium collector shall "behave" as if there was no collector during operation (Beam ON) to limit back-pressure effects.
- Limit as much as possible the pressure drops in the connection line between the burst disks and the collector.

EUROPEAN SPALLATION SOURCE

Main function and design constraints BEAM ON

Access	No personnel allowed in the tunnel			
CM gate valves position	Open			
Collector gate valves position	Open			
Helium collector "mode"	Inactive			
Worst case scenario	Release of helium from 6 elliptical CM* caused by accidental beam loss			
This is a very low probable event considering the Machine Protection System (MPS) in place				

Acknowledgement: J.Moberg & C-J.Hårdh

*The loss of 6 High- β (or 8 Spoke) was estimated based on an average air propagation speed of 3 m.s⁻¹ in case of an air inleak in the beam vacuum assuming that the gate valves would close in 4 seconds. As a result, air would propagate along the beam pipe (12 m on each direction) and thus affecting a total of 4 High- β (or 6 Spoke). A safety margin of an extra cryomodule on each side has been added to this number.

Source: A.Dalesandro & R.Dhuley, Results from sudden loss of vacuum on scaled superconducting radio frequency cryomodule experiment

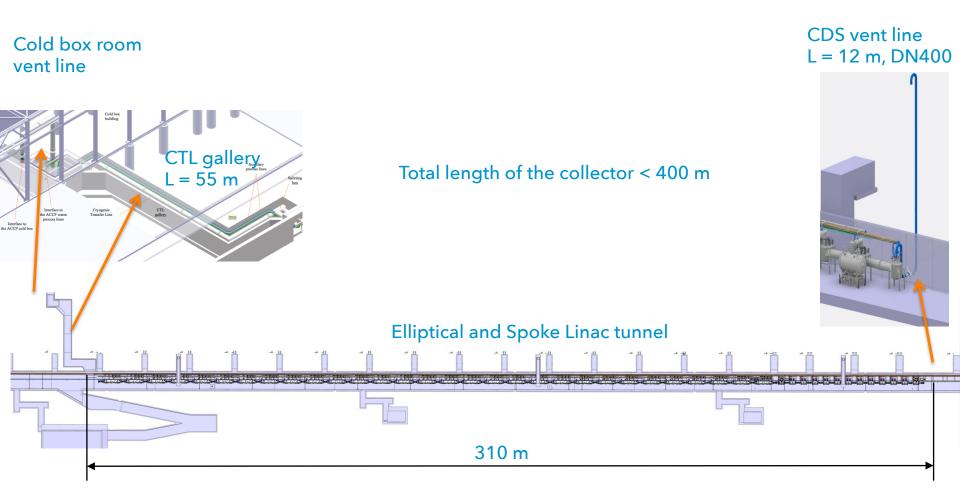
EUROPEAN SPALLATION SOURCE

Helium collector project team

J.Moberg, J.Fydrych, E.Lundh, D.Phan & J.Weisend

Main function and design constraints BEAM OFF

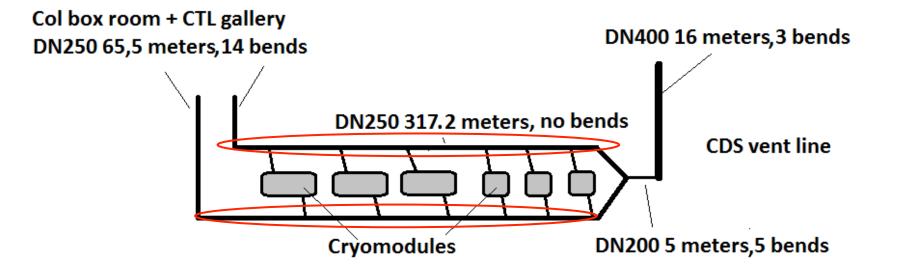
Access	Personnel allowed in the tunnel
CM gate valves position	Closed
Collector gate valves position	Closed
Helium collector "mode"	Active
Worst case scenario	Release of helium from 1 CM*



Acknowledgement: J.Moberg & C-J.Hårdh

*This assumption was made based on the fact that the gate valves of the cryomodules are closed, thus preventing the helium release from several cryomodules at the same time

Routing of the collector



Acknowledgement: J.Fydrych

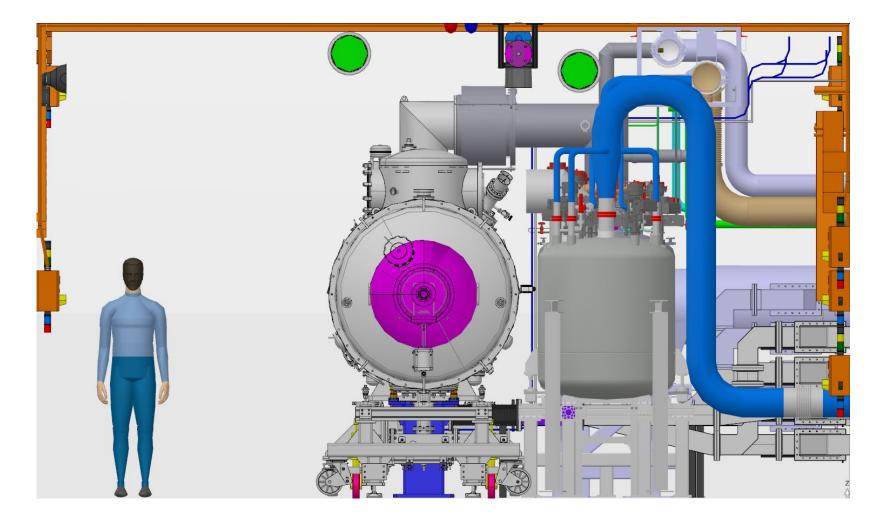
EUROPEAN Helium collector project team SPALLATION J.Moberg, J.Fydrych, E.Lundh, D.Phan & J.Weisend

SOURCE

Collector concept - double pipes

Main motivations:

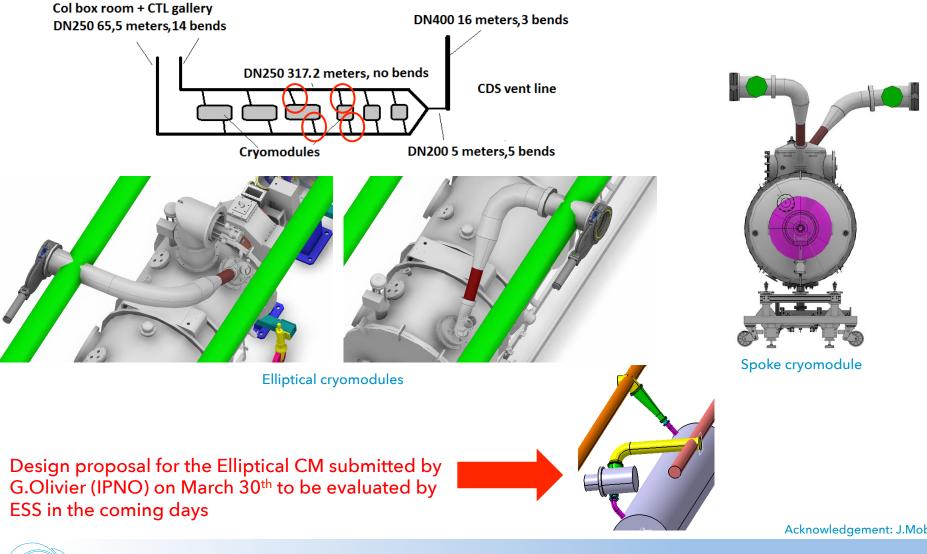
EUROPEAN


SPALLATION

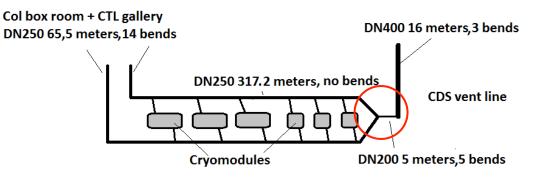
SOURCE

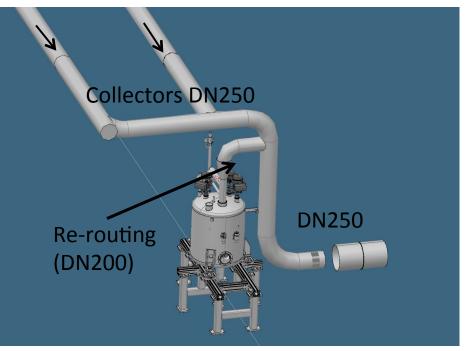
- 1. Reduce back-pressure effects from one release point to adjacent burst disks
- 2. Cope with the mechanical integration constraints of the accelerator tunnel

Acknowledgement: J.Moberg


Cross-section of the accelerator tunnel

Acknowledgement: J.Moberg & C-J.Hårdh


Collector concept - connection lines



EUROPEAN **SPALLATION** SOURCE

Helium collector project team J.Moberg, J.Fydrych, E.Lundh, D.Phan & J.Weisend Acknowledgement: J.Moberg

Collector concept - connection to the CDS vent line

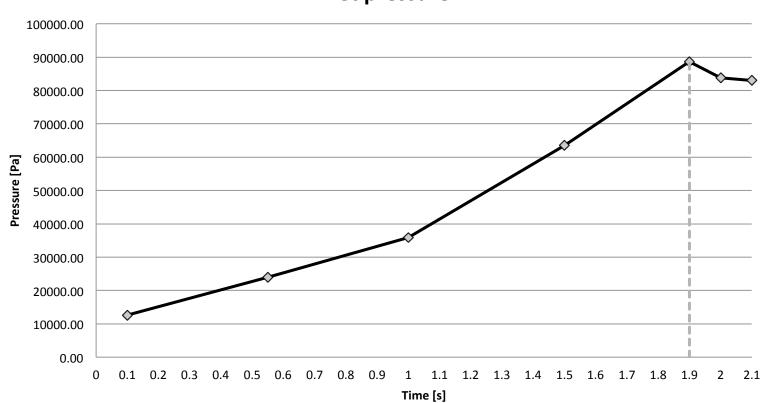
Acknowledgement: J.Moberg

Helium collector project team J.Moberg, J.Fydrych, E.Lundh, D.Phan & J.Weisend

EUROPEAN

SPALLATION

SOURCE

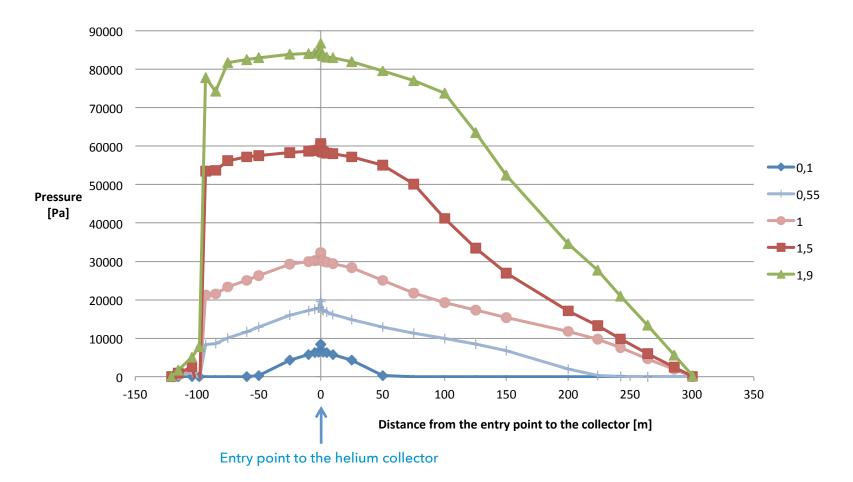

Pressure calculations

Assumptions

SOURCE

- Type of helium collector: **two-pipes type** -> one pipe connected to every 2nd burst disk
- Diameter of the helium collector: 2 x DN 250
- Type of cryomodules: Elliptical
- Distance considered between two burst disks of the Elliptical section: 8.4 m
- Temperature at the outlet of the burst disk: **5.06 K** (corresponding to the saturation pressure of the fluid)
- Mass flow rate of one Elliptical cryomodule: 7.2 kg/s per burst disk
- Duration of the release: 1.9 seconds
- Maximum allowable pressure in the collector: 1.9 bar(a)

Pressure at the discharging burst disk*

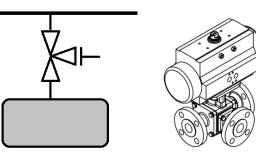

Inlet pressure

*Calculations were made assuming a 2m long DN150 straight pipe between the helium collector and the burst disks of the cryomodules

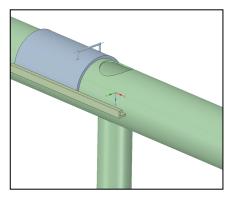
Acknowledgement: J.Moberg

EUROPEAN SPALLATION SOURCE

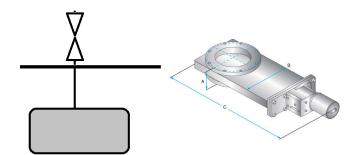
Pressure within the helium collector

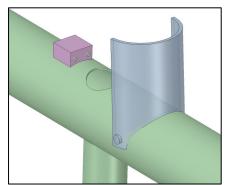


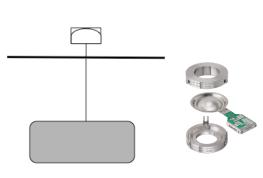
Acknowledgement: J.Moberg



Collector openings- Engineering solutions


5 different options investigated but only 2 were retained


Option n°1: 3-way T port valve


Option n°3: Slider valve

Option n°2: Gate valve

Option n°4: Flap valve

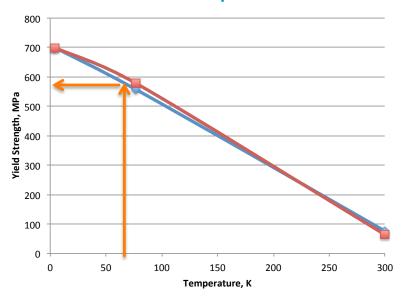
Option n°5: Burst disk

Collector openings - Gate valves

Acknowledgement: J.Fydrych

Component	Unit price	Quantity	Total price
Vacuum valves (DN250)	4100 EUR	90 pcs	369,000 EUR
Valve Controls	400 EUR	90 pcs	36,000 EUR
DN250 pipe	80 EUR	800 m	64,000 EUR
Supports	300 EUR	200 pcs	60,000 EUR
Hoses DN100	300 EUR	86 pcs	26,800 EUR
Bellows DN250	600 EUR	50 pcs	30,000 EUR
Installation	200 EUR	800 m	160,000 EUR
			744,800 EUR

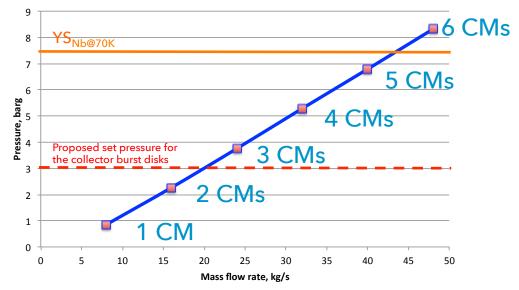
- Remotely controlled
- Off-the-shelf product
- Efficient perforation of the collector during operation (Beam ON)


- Poor accessibility of the gate valves
- Cost
- Complex maintainability (90 valves + 180 switches)
- Failure probability?*

*DN250 vacuum gate valves are designed for 5000 cycles

Collector openings - Burst disks

Yield strength of Niobium versus temperature



Estimated temperature of the cavity wall during an accident: 70 K

 $YS_{Nb@300K} = 80 MPa$ $YS_{Nb@70K} = 580 MPa$ (7.2 times higher)

The constraint of the maximum allowable pressure limit from the PED is not considered in the results presented in this slide

Max pressure in the CM versus helium mas flow rate

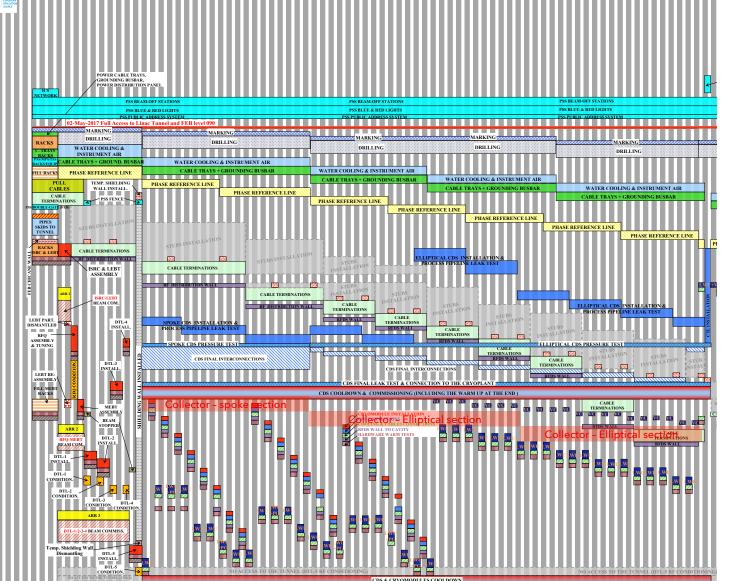
lambda	D	L	m	т	paverage	ro	Dp	Dp
-	m	m	kg/s	к	bar	kg/m3	Ра	barg
0.03	0.267	250	8	20	1.4	3.3719	85035.4	0.9
0.03	0.267	250	16	20	2.1	5.0589	226714.6	2.3
0.03	0.267	250	24	20	2.85	6.8666	375814.6	3.8
0.03	0.267	250	32	20	3.6	8.6742	528889.9	5.3
0.03	0.267	250	40	20	4.38	10.5534	679238.8	6.8
0.03	0.267	250	48	20	5.15	12.4073	831955.7	8.3

Assumption: Stress proportional to pressure load PS = 1.04 barg $P_{max} = 7.5$ barg

Acknowledgement: J.Fydrych

Collector openings - Burst disks

Acknowledgement: J.Fydrych


Component	Unit price	Quantity	Total price
Rupture disks (DN150)	700 EUR	86 pcs	60,200 EUR
RD holders	1000 EUR	86 pcs	86,000 EUR
DN250 pipe	80 EUR	800 m	64,000 EUR
Supports	300 EUR	200 pcs	60,000 EUR
Hoses DN100	300 EUR	86 pcs	25,800 EUR
Bellows DN250	600 EUR	60 pcs	36,000 EUR
Installation	150 EUR	800 m	160,000 EUR
			492,000 EUR

- No (or very limited) maintenance
- Passive device (no controls to manage)
- Cost efficient

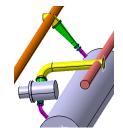
- Potential impact on the compliance with the applicable PED (maximum allowable pressure)
- Burst disks (cryomodule side) that can withstand high pressure available on the market?
- Potential impact on the design of the cryomodules (i.e. burst disks and diphasic line)?

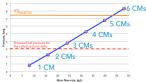
Helium collector - Time schedule

Acknowledgement: J.Fydrych

EUROPEAN SPALLATION SOURCE

Next steps


EUROPEAN


SPALLATION

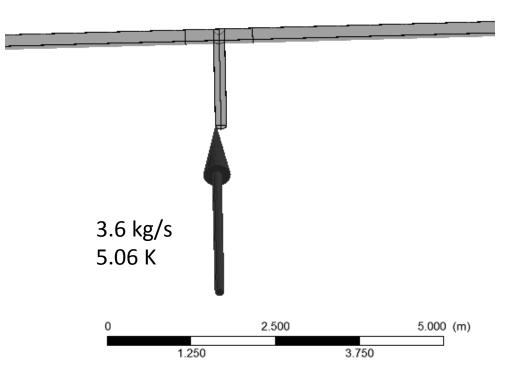
SOURCE

- 1. ESS to evaluate the design proposal for the Elliptical CM submitted by G.Olivier (IPNO) on March 30th.
- 2. ESS to perform new pressure drop calculations in the connection line between the cryomodules' burst disks and the helium collector.
- 3. IPNO to investigate if burst disks designed to withstand a maximum pressure of 4 bara downstream are available on the market as well as the cost impact. Also, the potential impact on the cryomodules design shall be assessed
- 4. ESS to make make a final decision regarding the engineering solution for the perforation of the helium collector in the coming weeks.

Simplified Geometry

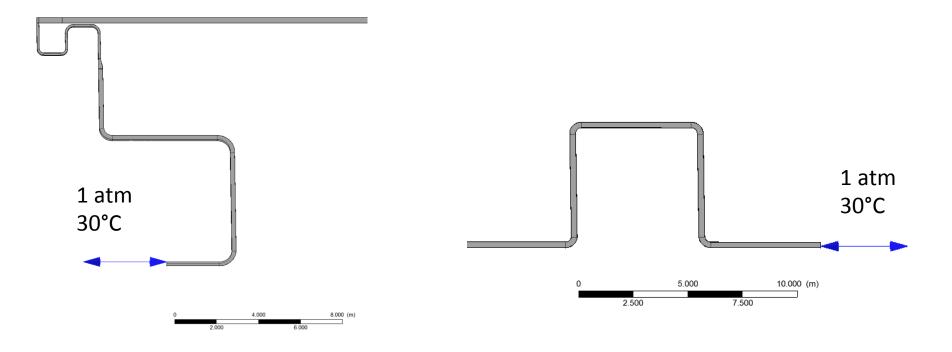
٦_

EUROPEAN SPALLATION SOURCE



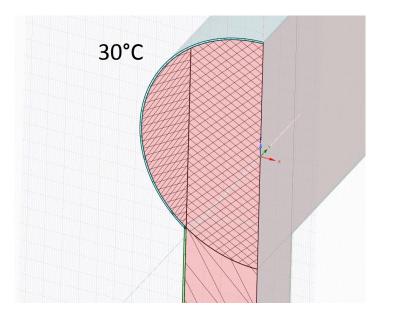
Boundary conditions, Elliptical cryomodule

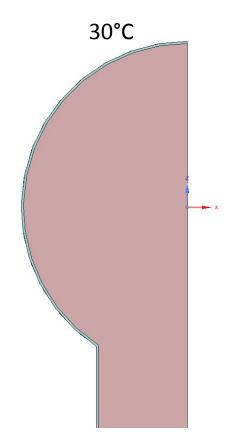
EUROPEAN SPALLATION SOURCE



Boundary conditions, Elliptical cryomodule

EUROPEAN SPALLATION SOURCE


Outlets



Tunnel-Pipe-Helium boundary

EUROPEAN SPALLATION SOURCE

