DE LA RECHERCHE À L'INDUSTRIE

CRITICAL DESIGN REVIEW #1 FOR MEDIUM BETA CAVITY CRYOMODULES

3-4 APRIL 2017

CRYOMODULE OVERVIEW, ORGANIZATION AND DEVELOPMENT PLAN

FRANCK PEAUGER

www.cea.fr

🖄 🚟 MEDIUM BETA CRYOMODULES IN ESS LINAC

Cryomodule overview, organization, development plan

- Fr-Sw Agreement:
 - Cooperation Agreement in the field of Neutron Accelerator Science to the ESS
 Design Phase, Amendment #2, 18 December 2013
 - Medium-Beta Elliptical Cavity Cryomodule Technology Demonstrator (M-ECCTD)
- Schedules of the In Kind Contribution Agreement
 - AIK#1.1: Technical Management Scope of Work to the In-Kind Contribution
 Agreement signed between ESS-ERIC and CEA
 - AIK#5.1 High-Beta Elliptical Cavity Cryomodule Technology Demonstrator (H-ECCTD)
 - AIK#5.2 Elliptical Medium and High Beta Cryomodule Component Supply
 - AIK#5.3 Elliptical Cryomodules Engineering, Assembly and Test and Technical Assistance in Cavity Design, Manufacturing and Tests
 - AIK#5.5 Elliptical Cryomodules Installation and Commissioning

SCOPE OF THE MEDIUM BETA CRYOMODULES ACTIVITIES

- CEA is charge of all the prototyping activities and series production of the 9 medium beta cryomodules except:
 - The design and prototyping of the cryostat (IPN Orsay)
 - the production of the series medium beta cavities (INFN/LASA)
 - The RF power acceptance tests of the cryomodules at ESS in Lund
- The INFN/LASA proposed a new medium beta cavity design slightly different from the one developed in the prototyping phase by CEA
- Activities done in two steps:
 - Development of a cryomodule demonstrator M-ECCTD
 - Delivery of the nine series medium beta cryomodules

	M-ECCTD	M-SERIE
β	0.67	0.67
# CM	1	9
Cav. /CM	4	4
# Cav.	3 + 1 LASA + 3 spares	36

- For the prototype phase M-ECCTD :
 - design and procurement of the cavities, couplers, tuners, magnetic shieldings (CEA)
 - Design and procurement of the vacuum vessel, spaceframe, thermal shielding, cryogenic circuits (IPNO)
 - Preparation and tests of the cavities and couplers (CEA)
 - design and fabrication of the cryomodule assembly toolings (CEA)
 - Development of the high power test stations (for couplers and cryomodules) (CEA)
 - assembly and high power RF tests of the cryomodule (CEA)
- For the series phase:
 - CEA is responsible for:
 - the procurement of the cryomodule components (except cavities)
 - the clean room preparation and RF conditioning of the power couplers
 - the assembly of the nine cryomodules
 - the high power RF tests of the three first cryomodules at CEA
 - The prepare the cryomodule for shipment to Lund
 - INFN is responsible for the procurement, preparation and tests of the cavities
 - IPNO is responsible for the update of the cryostat components design and drawings

ESS MB CRYOMODULE 3D VIEW AND CROSS SECTION

MEDIUM BETA CRYOMODULE MAIN SPECIFICATIONS

- Four superconducting cavities in pure bulk niobium (RRR>250)
 - Frequency: 704.42 MHz
 - \circ 6 cells at β =0.67
 - Beam pulse: 2.86 ms at 14 Hz
 - No HOM couplers (decided at the PDR)
- Accelerating gradient
 - $E_{acc} max = 16.7 MV/m, Q_0 > 5.10^9$
 - Power coupler: **1.1 MW max**
 - External coupling: $Q_{ext} = 7.5.10^5$
- Slow tuning system: ± 300 kHz
- Fast tuning system (LFD) : 1+1 piezo
- Cavity cooling: LHe at 2 K
- Coupler cooling: SHe at 4.5 K, 3 bars
- Thermal shielding cooling: LHe 50 K
- Overall length: 6584 mm from flange to flange
- Thermal losses (for MB):
 - Static losses at 50 K: 46.2 W
 - Static losses at 2 K: 13.2 W
 - Dynamic losses at 2 K: 23.2 W
- Pressure vessel: good engineering practice (article 4.3 of PED)

Cryomodule overview, organization, development pla

ORGANISATION CHART (ESSI PROJECT LEVEL)

ORGANISATION CHART (CRYOMODULE LEVEL)

- + CEA/DRF purchase department (« Service Commercial »)
- + CEA/DRF/IRFU/SACM Infrastructures and Safety managers

Contractual links

"short links" for technical exchanges (with ESS and CEA always in copy)

"Observers"

PRODUCT BREAKDOWN STRUCTURE (PBS)

OVERALL ESS CRYOMODULE DEVELOPMENT PLAN

03-04/04/2017

MEDIUM BETA CRYOMODULES DEVELOPMENT PLAN AND REVIEWS

CM1,2,3

CM4,5,6

CM7,8,9

- Cryomodule components procurement:
 - Divided in several procurement contracts adapted to the skills of the companies
- Cryomodule assembly :
 - Assembly rate of <u>one cryomodule per month</u>
 - Will be performed in the former "XFEL Village" which becomes officially now the "ESS Village"
 - Fully dedicated to the ESS cryomodule (no interference with other projects at Irfu)
 - Will be done by an industrial partner on CEA Saclay site, under the supervision of CEA team
 - Include clean room cavity string assembly, rool –out activities, alignment and cryostating (XFEL like)
 - Include also power coupler clean room preparation (same clean room) (new!)
- Cryomodule tests at CEA:
 - Will be done on the three first series MB cryomodules only
 - These tests are mandatory to have a fast feedback on the quality of the cryomodule assembly

PROCUREMENT AND ASSEMBLY ROADMAP

03-04/04/2017

TENDER

 Cryomodule scope and development plan well defined

CONCLUSION

- Organization in place and structured within the ESSI project and within an international collaboration
- Procurement process anticipated and fully optimized to limit technical risks and to "fine-tune" the cryomodule delivery schedule

Thank you

Commissariat à l'énergie atomique et aux énergies alternatives
Centre de Saclay 191191 Gif-sur-Yvette Cedex
T. +33 (0)1 69 08 76 11 F. +33 (0)1 69 08 30 24
Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

ORGANISATION: MEETINGS

Internal CEA meetings

- ESSI Project meeting
 - with all the workpackage + CEA purchase department
 - Every month (Thursday morning)
- ESS cryomodules meeting:
 - with all the workpackage + CEA purchase department
 - Every month (Thursday morning)
- Non-conformity/modification meeting:
 - Internal meeting at CEA with workpackage leaders,
 Quality team and system engineer
 - Tuesday afternoon every 2 weeks
- Infrastructures meeting:
 - Internal meeting at CEA with infrastructures leaders and other project leaders
 - Agree on short term schedule for chemical treatment, clean rooms, testing activities
 - Every Friday afternoon

Organized by ESS

- SRF meeting :
 - Visio
 - ESS / CEA / INFN / STFC
 - every Friday morning
- Interface meeting:
 - Visio
 - ESS / CEA / IPNO
 - Every Tuesday afternoon
- SRF collaboration meeting
 - ESS / CEA / INFN / STFC
 - every 3 months