The High Gradient Program & Other SRF activities at CERN

Frank Gerigk SLHIPP-7, 8-9 June 2017, IPN Orsay

Content

01	The High-Gradient Program, formerly known as SPL
02	LHC
03	HL-LHC
04	HIE-ISOLDE
05	FCC
06	QPR
07	Space

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

High gradient program

...history and status

The SPL/High Gradient Program 2000 - 2017

2000	First SPL conceptual design report (r
2006	2nd SPL conceptual design report (b
12/2007	Council approval for "new initiatives" estimate.
12/2008	1st SPL collaboration meeting: need (clean rooms, 704 MHz RF, vertical b
2009	 SPL & Linac4 are part of sLHC, plan 2014 SPL construction start foreseen for C ESS will be build in Lund ESS/SPL looking for synergy and co to transform XFEL/TESLA technolog infrastructure upgrade at CERN, star
2010	Decision not to build SPL but to upgr half of 2013, 8-cavity cryomodule for goals: i) preserve potential for alterna injectors for the long term, iii) update
2017	4-cavity module assembly is now fore the CRAB and LHC spare program. S chain to enable 5 ns bunch spacing

re-using LEP SC cavities), CERN 2000-012 pulk Nb 5-cell cavities), CERN-2006-006

: preparation of a SPL technical design report and cost

to build SC Nb cavities and upgrade SM18 infrastructure bunkers, etc.), ground breaking of Linac4,

nned date for Linac4 beam + PSB modifications: April

Jan 2013,

ost sharing, planning for an 8-cavity cryo module at CERN gy to 704 MHz and to demonstrate 25 MV/m, start of art of coupler work

rade PSB, decision to build 4-cavity cryomodule for first first half of 2015: SPL becomes an R&D program with the ative physics programs, ii) preserve possibility of new e CERN competences in SRF

eseen only for 2019 as the assembly space is blocked by SPL is suggested as a potential part of the FCC injector (see FCC week, Elena Chaposhnikova).

Cavity fabrication, tuning, warm testing **EN-MME**

2 Cu cavities + 4 Nb cavities (RI) + 1 Nb cavity (CERN)

- development of 1/2 cell f-measurement
- development of cell-by-cell tuning bench (picture) ightarrow
- CERN's first optical bench for cavity inspection from ightarrowKyoto Univ./KEK
- technology transfer of port extrusion from CERN to RI
- automated bead-pull measurements to record HOM ightarrowspectrum

Electrohydroforming

- collaboration with BMAX started for HG cavities,
- first developments done on 704 MHz HG Cu shells,
- further developed for 704 MHz Nb,
- today being developed for 400 MHz LHC/FCC Cu substrates,

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

Cavity chemistry & cleaning TE-VSC

Vertical Electroposlishing

- Development of vertical EP process.
- No moving parts, less risk, but more difficult flow dynamics.
- 3 iterations of cathodes led to an optimised process giving excellent surface quality.
- 3 cavities processed so far.
- Unique facility in the SRF world!

High Pressure Water Rinsing

- On site water cleaning station and particle counting of waste water.
- ightarrowcounting, handling, outside surfaces, nozzle, ...)
- HPR accounts for 90% of the re-treatments done on XFEL cavities, crucial technology
- Was then adapted for the CRAB cavities.

• Installation and commissioning of HPR station with direct access to clean room. Development of HPR process using HG cavities as test objects (time, particle

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

Cold testing

BE-RF

Last year we presented 22 MV/m. This year's results will be presented by Katarzyna Turaj

• On J. Tückmantel's advice HOM's in the SPL machine were studied in depth.

- and pulsing schemes, then one cannot exclude that dangerous HOMs appear.

• Marcel Schuh made his thesis on finding the conditions under which there could be beam destabilising HOMs in the SPL: if one wants to keep open all possible chopping • Kai Papke is finalising his thesis on defining and building appropriate HOM dampers. • Nb HOM dampers under construction, one damper shall be installed in the module.

CM integration and assembly CEA, CNRS, TE-MSC, EN-MME

The High-Gradient 4-cavity cryo-module

- Started as a French in-kind contribution, drawings + vessel (2010 2015, followed by V. Parma)
- Vittorio developed the concept of supporting the cavities with the power coupler, \bullet
- Principle was experimentally validated with a cryo-mock-up (V. Parma + R. Bonomi) lacksquare
- In 2015 the design and integration effort was taken over by MME (Luca Dassa).

Since then: large effort on drawings, safety documentation, specifications, re-design of magnetic shield, etc...

High-Gradient status

Design update & general progress:

- ~520 hours to modify IN2P3 design and to transfer CAD data (3D model, 2D dossier).

- 3 cavities are EP treated, 2 are high-power tested (more news in Katarzyna's talk).
- CERN cavity is ready for welding. Presently waiting for a slot in the welding schedule.
- integrated. Many components are ordered.
- A valve box for SM18 (compatible with Crabs) has been ordered.
- talk).
- High power coupler development (Eric).
- Transition Edge Sensors for quench location (Hernan)

• ~2300 hours of mechanical design for updating the design & drawings, tools for clean room assembly & cryostating, tooling design for tuning, cold-test, welding, half-cell manufacturing • Redesigned magnetic shielding: cold shield + warm shield + active compensation coils. • All CM components (incl. instrumentation, alignment, etc.) have been defined, specified, and

• MB IOT test stand was established and commissioned, Thales/CPI tube was tested (see Eric's

• Loan of high-power test stand to ESS (addendum 26): can continue until autumn 2018.

(occupied by Crab cavity program) -> updated schedule.

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

Until the completion of the SM18 extension, we do not have a space to assembly the HG module

18			20	19				
Q 3	Q4	Q1	Q2 Q3					
ic piping,								
clean roc asse	om string mbly							
C	cryostating							
			SM18 shut down	cold t	esting			

Summary HG

A RICH R&D PROGRAM

- started in the SPL context and was supported by ESS,
- was the reason to establish and upgrade substantially the CERN SRF infrastructure (clean rooms, HPR, EP, optical bench, tuning, vertical test stands, high-power RF,...)
- It drove some key SRF developments, which are today beneficial for other SRF activities: HPR procedures, cold test preparation procedures, clean handling, having 2 K in the SM18 bunkers, SRF coupler development, fundamental work on HOMs in linacs, new CM concept (couplers supporting cavities),
- today we have accumulated 6 years of delay on the original 3-year plan, because the priorities were shifted to HIE-ISOLDE, CRABs, and LHC spares,
- the experience (and infrastructure) gained with HG program, helps us to succeed with the CRAB cavity program for the SPS test.

LHC spare cavity program

- NB-COATED Cu cavities operating at 4.5 K.
- 400.790 MHz, 8-16 MV/beam.
- 2 cryomodules of 4 cavities/beam.
- 1 spare module and one spare dressed cavity available. Many of the "old" experts have retired. LHC has a physics program until 2035 and we have no experience with ageing of LHC cryomodules.
- The LHC spare cavity program aims at producing 1 complete cryomodule and one spare cavity train (4 cavities).
- \rightarrow re-establishment of engineering folder, welding, tuning, assembly, and coating procedures
- industrial production of cavities and subsequent coating at CERN collaboration with BINP on production of cut-off tubes started

LHC spare cavity program

Practice cavity 1,2

- full cut-off tubes, but offfrequency
- cavity fabrication tools & process,
- rinsing, chemistry
- Nb-coating (magnetron) sputtering),
- several re-coatings
- coating and cold testing validated

Practice cavity 3,5

- half cells by spinning and electro-hydraulic forming (EHF),
- simplified cut-off tubes, cold tests in June/July
- 2017
- ➡ forming validated, coating consolidated

Model cavity

- He-tank updated design,
- cold test expected August 2017
- if successful: the first spare cavity
- validation of cavity design & fabrication process

Series production

- 8 cavities + 2 spares,
- technology transfer to BINP for cut-off tube production,
- production of half cells (spun or EHF)
- He-tanks tendering in 2017

LHC spares: timeline

2016	2017			2018	2019	2020	
design &	analysis						
Practice ca	vity 1,2						
Practic	ce cavity	3,5					
	Μ	lodel cavi	ty				
	Market s technolog	survey, IT, gy transfer					
				spare cavities	s 1-4		
					spare cavities	s 5-8	

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

High-luminosity LHC

the largest HEP accelerator in construction (1.2 km of LHC!)

2 types of Crab cavities

Double Quarter Wave

RF Dipole

Voltage	3.4 MV/cavity
E peak	40 MV/m
B _{peak}	70 mT
Frequency	400.79 MHz
Q ₀	10 ¹⁰
Q _{ext}	5 x 10 ⁵
Cavity tuning	±100 kHz
Temperature	2.0 K
RF power (SPS)	40 kW

→ 2 cavities/beam/IP side → for ATLAS and CMS → 16 cavities/8 CMs in total

2 types of Crab cavities

Double Quarter Wave

- Vertical crossing for Atlas
- SPS test in 2018

Frank Gerigk, High-Gradient Program & CERN SRF, SLHIPP-7, 8-9 June 2017

RF Dipole

- Horizontal crossing for CMS
- SPS test in 2021

SPS test stand layout

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

- Moving table can move the cavity in/out of the SPS beam in ~10 min.
- Test stand is foreseen for DQW and RFD.
- In Nov 2015 CERN insourced the DQW production
- Test stand will remain as a unique SRF test stand with proton beams at CERN.

Crab cavities: timeline

Last test opportunity before launch of series:

- LHC installation!
- Precision control of voltage and phase for preservation of beam quality.
- \rightarrow Trip rate must not impact LHC availability.
- Emittance growth, machine protection, RF non-linearities, instabilities,

2021	2022	2023	2024	2026	
	Run 3		L	. S3	Run 4
SPS test CM2					
cavities)					

LHC series production & installation (8 CMs)

→ First operation of crab cavities in high-current and high-energy proton machine. Beam test mandatory before

⇒ Injection/capture/acceleration with crabs, can the cavities be made invincible for the beam (counter-phasing)?

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

Summary HL-LHC

- The 2 bare DQW cavities were tested and performed above specs.
- One DQW and one RFD tested in the US above specs
- First dressed cavity is under test (He leak at one flange).
- First US dressed cavity quenched at 2.8 MV.
- 8 cavities from the US (AUP, LARP) successor), 8 tendered by CERN.
- Going forward towards SPS installation during 2017/18 break without any slack..

DQW Bare Cavity tests - final results

- CM4 is under assembly and will be finished after summer.
- Cryo losses in transfer line were reduced to nominal.
- All 15 cavities (3 CMs) operate above specs due to optimised cool-down procedure.
- Helium processing works and provides a mechanism to save declining (dirty) cavities. However, it will be used as little as possible due to associated risks.
- First beam through 3 CMs this week.

HIE ISOLDE

Future Circular Collider Study

- CDR until end of 2018,
- In 2020 assessment by the European Strategy Group on the future physics roadmap.
- FCC-ee as potential first step
- FCC-he as option
- FCC-hh 100 TeV pp in 100 km

parameter			FCC-ee	FCC-hh		
physics		2	W	Н	t	hh
energy/beam [GeV]	45	5.6	80	120	175	50000
bunches/beam	30180	91500	5260	780	81	
bunch spacing [ns]	7.5	2.5	50	400	4000	25
bunch population [1011]	1.0	0.33	0.6	0.8	1.7	1
beam current [mA]	1450	1450	152	30	6.6	500
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	210	90	19	5.1	1 .3	5-30
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	
RF voltage [GV]	0.4	0.2	0.8	3.0	10	0.32

Frank Gerigk, High-Gradient Program & CERN SRF, SLHIPP-7, 8-9 June 2017

FCC options

parameter			FCC-ee			FCC-hh
physics		Z	W	Н	t	hh
energy/beam [GeV]	45	5.6	80	120	175	50000
bunches/beam	30180	91500	5260	780	81	
bunch spacing [ns]	7.5	2.5	50	400	4000	25
bunch population [1011]	1.0	0.33	0.6	0.8	1.7	1
beam current [mA]	1450	1450	152	30	6.6	500
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	210	90	19	5.1	1.3	5-30
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	
RF voltage [GV]	0.4	0.2	0.8	3.0	10	0.32

Frank Gerigk, High-Gradient Program & CERN SRF, SLHIPP-7, 8-9 June 2017

"high current" FCC options # machine

"high gradient" machine

parameter	FCC-ee							FCC-hh	
physics	Z	Z	W		Н		t		hh
RF voltage [GV]	0.4	0.2	0.	.8	3.0		10		0.32
beam current [mA]	1450 1450		152		30		6.6		500
cavity technology	Nb/Cu		Nb/Cu	Nb	Nb/Cu	Nb	Nb/Cu	Nb	Nb/Cu
E _{acc} [MV/m]	10		10	20	10	20	10	20	10
frequency [MHz]	4(00	400	800	400	800	400	800	400
temperature [K]	4.5 4.5		4.5	2.0	4.5	2.0	4.5	2.0	4.5
Nb cavities	Nb cavities 107 53		107	107	200	160	667	533	32
cells/cavity	1	1	2	2	4	5	4	5	1
Pcavity	900	900	470	470	251	313	75	93	<500
	5.4375	5.4375	1.14	1.14	0.45	0.5625	0.099	0.12375	1.875

same cryomodule

Frank Gerigk, High-Gradient Program & CERN SRF, SLHIPP-7, 8-9 June 2017

cavity options

both beams in same

cavities

cavity options II

two different sets of cavities will be needed to cover all scenarios, staging is foreseen: install more cavities in each shut-down

"high current" machine

- lower frequency, low N_{cells} , low R_s
- 400 MHz, Nb/Cu, < 100 cavities
- FPC: aim at 1 MW/cavity (movable for hh, fixed for ee)
- HOM power < 1.5 kW/cavity
- 1 RF source/cavity (e.g. high efficiency klystrons)
- CM design to accommodate 1-cell (W) and 2-cell cavities (Z, hh)

"high gradient" machine

- optimise power consumption, multicell, high R_s
- 400 MHz (Nb/Cu) or 800 MHz (Nb), > 1000 cavities
- transverse impedance favours low frequency
- N_{cells} defined by beam-cavity interaction, for now assume 4/5
- 1 RF source/cavity: SSA, IOT

SRF R&D for FCC

optimize cell shapes

beam dynamics studies Q-slope mitigation

assembly & cost optimisation

ancillaries

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

material & manufacturing

efficient RF production

coated crab cavities

Next generation Crab Cavity FCC # Wide Open Waveguide cavity (WOW)

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

Why a Nb/Cu crab cavity?

- No thermal tun-away ("natural" quench protection).
- Lower cavity impedance: factor 3-4 for $Z_{x,y}$ (mandatory for FCC).
- No magnetic shield (cost, simplicity).
- feedthroughs).
- Cheaper base material (Cu).
- Operation at 4.5 K.
- Mechanical stability (much lower microphonics: easier RF stabilisation).
- Structure can be cascaded.

Crab cavity power needs are driven by off-axis beam and not by surface losses.

• Power coupler and HOM dampers can be outside of the helium tank (no

Wide Open Waveguide cavity

electric

magnetic

Basic parameters

Voltage	2.7 MV/cavity	80% of bulk Nb (
E peak	40.5 MV/m	same as bulk Nb
B _{peak}	70 mT	same as bulk Nb
Frequency	400.79 MHz	
Temperature	4.5 K	
Pdiss	< 50 W	for LHC quality co

Frank Gerigk, High-Gradient Program & CERN SRF, SLHIPP-7, 8-9 June 2017

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

machined out of seamless tubes

Status & timeline

- Copper is at CERN and qualified, welding tests done, handling and tooling concept is defined.
- Pieces for prototype 1 are ready for welding.
- Preliminary coupler design for vertical testing.
- LHC-style coating set-up (coating electrodes inserted in cavity) was chosen. Modifications on existing set-up is needed.

2016				2017			2018				2019			
material procurement, drawings			fabrication 1st prototype											
				fabrication 2r					nd prot	otype				
			coating design & construct			ction coating, cold tes				sting, r	e-coatir	ng		

Thin film R&D

Frank Gerigk, High–Gradient Program & CERN SRF, SLHIPP–7, 8–9 June 2017

Quadrupole resonator

Our tool to qualify SRF surfaces

Principle

- 4 rod transmission line half-wave resonator
- resonant frequencies: 400/800/1200 MHz
- pole shoes focus magnetic field on the sample
- thermally decoupled sample
- high-resolution calorimetric measurement of surface resistance

- Since then it became a work-horse for CERN's coating qualification.
- 400, 800, and 1200.

Activity

 Original QPR was built 20 years ago to measure samples for the LHC cavities. • HZB Berlin recently optimised and re-built the QPR (Niowave) and achieved 120 mT on the sample surface (see SRF 2015) for 433, 867, and 1300 MHz. • CERN has further optimised the pole shoes and is building another device for

Machining starts in October/November 2017, first tests foreseen in 2018.

infrastructure

Frank Gerigk, High-Gradient Program & CERN SRF, SLHIPP-7, 8-9 June 2017

space, space, space...

SM18 extension

 Trying to acquire an additional 400 m² on the Meyrin site (existing building)

- Civil engineering consultant is hired.
- Final cost estimate in preparation.
- Assumed start of construction: beginning 2018 (duratioin: 8 months)

THANKS

FOR

Listening

