

Ifmif Cryoplant : installation and commissioning

Bertrand RENARD (CEA)

The International Fusion Materials Irradiation Facility (Engineering Validation and Engineering Design Activities phase), is an accelerator-based neutron source that will use Li(d,xn) reactions to generate a flux of neutrons with a broad peak at 14 MeV equivalent to the conditions of the Deuterium-Tritium reactions in a fusion power plant.

Under a procurement agreement between F4E (EU) and QST (JA), the cryoplant is meant to cool one SRF Linac with 8 Half-wave resonators and 8 solenoids packages.

The Ifmif cryoplant is medium-size standard and was delivered by Air Liquide Advanced Technologies

Ifmif Cryoplant description

Cryogenic production

- Cold Box, Compressor unit, Oil Removal System,
- Local Control System

Cryogenic distribution

- Dewar, storage Buffer, atmospheric Heat Exchanger and Room Temperature Valve Panel
- Cryogenic lines, room temperature piping
- cabling

Cryoplant and cryomodule interfaces installation in advance All connections with +/-10 mm flexibility in 3D

- cryogenic connection (with additional cooling flexibility for internal lines)
- Current Leads outlets
- Power Couplers outlets
- Safety relief chimneys

Cryogenic power margin

- 50% margin for static loads
- 20% margin for dynamic loads

Licensing preparation (ASME + additional requirements)

- Equipment and tests
- Certificates

Ifmif Cryoplant: installation

07/06/2017

SLHiPP-7 Ifmif Cryoplant installation and commissioning

Installation risk analysis

Utilities unavailable (Power, cooling water, instrument air, LN2, GN2, GHe, vacuum pumps, He leak detector, nitrogen trace detector)

- Risk: limited commissioning and testing
- Mitigation: anticipation

Major GHe leaks or pollution of the buffer

- Risk: large helium loss
- Mitigation: separate circuits with separate safety valves, systematic testing with precise protocols

Installation work and adjustments

WORK CONTENT

Deliveries

- EU equipment
- Local piping and cabling material

ADJUSTMENTS

Heavy paperwork

Positioning and anchoring

Creation of a matrix of responsibilities to precise ownership, work sharing, toolings, anchor calculation responsibility, supervision...

Cryogenic lines installation

Interface connections

Room temperature piping work

X-ray replaced by Dye-penetration tests

Modifications reporting on 3DMU

Cabling work

Power safety rules and documentation

Installation adjustments

3D Mock-up Expectations had to be clarified:

- Precise tool for accelerator and interfaces, but rough volume reservation for some piping and cabling Corrections:
- Inevitable mistakes and surprises (wall position, lamp, missing cable tray...) that required fast decisions

Schedule and on-site rules

- Work steps conducted in parallel, so only the duration of operations were useful
- Weather constraints and work priorities

Safety and coactivity

- Weekly meetings, daily meetings to follow operations
- Schedule for each work area
- Safety rules of each activity (welding, confined work...)

07/06/2017

Commissioning and tests risk analysis

Startup helium contamination

- Risk: damage the Cold Box turbines
- Mitigation: careful monitoring of pollution during conditioning and cooling

Cryogenic power needed is heavily increased (beyond margin)

- Risk: duration of dynamic tests heavily reduced
- Mitigation: increase storage Dewar size
- Correction: optimization of cryogenic power use, and eventually increase storage buffer size

Commissioning problem solving

COMMISSIONING CONTENT

Utilities checks Electrical checks Connection checks

PROBLEM SOLVING

Incorrect connections... Missing parts, leaks, labelling, protections...

Conditioning (compressor oil, ORS charcoal drying, CB adsorbers drying, GHe conditioning)

Programs checks Safety checks

Compressor commissioning Turbines installation

By compressor Manufacturer 24h operation needed

Cryoplant tests

ADJUSTMENTS

post-processing

Work overtime necessary

Leak sensitivity x1000

content and additions

Performances confirmed after

Parameter settings time constant ~6h

Cooling

IFMIF

Performance tests

- Cryogenic elements tightness
- Dewar losses
- Refrigeration 101 W and liquefaction 52 l/h @5K

Acceptance tests

Passed in terms of cryogenic power!

Meetings and exchanges to clarify

Complete documentation:

- Manufacturer book
- Operation manual
- Maintenance manual

Operators training Storage of material

Postponed

07/06/2017

Conclusions

Special Ifmif challenges:

Cultural/communication challenges in Japan (paperwork, safety rules, working hours...)

- Licensing regulation challenges in Japan
- > Limited local support: best if maintenance and operation teams are already operational

General lessons

- As much tests as possible in factory
- Commissioning consists mainly in problem solving!
- Industry is highly experienced
- > Although deeply modified, the schedule proves to be efficient
- Commissioning engineers have the support of industry experts

The Ifmif cryoplant is waiting for parameters adjustments (cooling parameters fine tuning, cryogenic line phase separator setting...) and for the SRF Linac cryomodule connection.