Cold tests of bulk Nb cavities at CERN

Katarzyna Turaj

on behalf of

S. Barriere, A. Castilla, B. Frere-Bouniol, P. Fernandez Lopez, K. Hernandez Chahin, A. Macpherson, K. M. Schirm, N. Shipman, N. Stapley, A. Zwozniak, M. Wartak

Bulk Nb Cavity Testing at CERN

• RF cavity testing at CERN's SM18 Facility:

- 400 MHz Crab Cavities (Bare & Dressed) & Cavity Tuners
- 704 MHz High Gradient Program,
- 1.3 GHz cavity R&D

2017

б О

SLHiPP-7 at IPN Orsay , June 8

2017

CERN's Bulk Niobium Program: Overview

HL-LHC Crab Cavity

- RF validation of bare and dressed 400MHz cavities for SPS
- Cryomodule assembly and validation
- Installation into CERN SPS for validation with proton beams (2018)

High Gradient Cavity Program

- Prepare and validate 5-cell ß=1 704 MHz cavities
- Bring 4 cavities to specification for assembly
- Assembly into a cryomodule for RF validation in CERN's SM18 facility

Process and Diagnostics development

- Cleanroom techniques and cavity assembly procedures
- RF surface preparation improvement •
- **Diagnostics for Quench localization**,
- Bulk and surface RRR measurements
- Cooldown techniques, control of flux trapping

2017

ົດ

Recent Activities: Key Points

Over the last 12 months

- Upgrade of infrastructure interleaved with cavity testing
- Ongoing upgrade of our 4m & 2m cryostats
- ~ 9 months for RF Testing
 - Dominated by RF tests on Crab Cavities

HG Cavity Performance: Specification achieved

- Validated upgraded electro-polishing cathode design
 - Chemistry now proceeding on remaining cavities

Cleanroom assembly process

- Process and infrastructure reviewed for Crab project
 - Cavity handling and assembly more controlled & cleaner

2017

б О

 ∞

SLHiPP-7 at IPN Orsay, June

Schedule from first half of 2017

- Last 12 months dominated by HL-LHC Crab activity
 - High Gradient RF tests "squeezed in"

Title	Q1 2017	Q2 2017	2017
T Bully Nichium Couity Droggen	1 2 3	4 5	6 7
High Gradient			
$\sqrt{3}$ - HG2 Puch to encoification			
V3 - HG2 Push to specification	2.4 WEEKS	1 44	
HC1 Final Chamietry 15um average	2		
HG1 Final Chemistry 150m average			
HG3 Bulk Criemistry Toourn average	High Gradient		
			Zweeks
▼ CRAB: DQW_SPS			
Component Deliveries	2.8 Weeks		
DQW_SPS_001 recieved in SM18			
Cavity 1: Bare cavity validation	1.28 months		
Cavity 1: Assembly of helium tank on cavity	2.15 months		
Cavity 1: Mounting of HOMS and pickup		3.20	
Tooling modifications			
Cavity 1: dressed cavity validation		2.7 week	s e
DQW_SPS_002 recieved in SM18	◆		
Cavity 2: Bare cavity validation	1.16 months		
Light BCP			
Repeat cold test		2.6 weeks	
Transport activity	CRAB	L L L L L L L L L L L L L L L L L L L	
Cavity 2: Assembly of helium tank on cavity		1.9 months	
Cavity 2: assembly of HOMS and pickup			1.2w
DQW_SPS Crab Cryomodule			7.7 months
► DQW_PoP CRAB LLRF			1 month

Vertical Cryostat

5

CERN

2016 Results: High Gradient

SLHiPP-6

Improvements from cavity preparation significantly reduced field
 emission resulting in improved RF cavity performance

2017 Results: High Gradient

Continued improvement in preparation & test procedure
 reduced field emission & reach specification

Q₀>10¹⁰ at E_{acc}=25 MV/m

CERN

Performance Measurements

- All scans performed in CW operation @ 2K
 - Scan increments in watts => detailed scan at high power
- Field emission above 20MV/m
 - => Cavity assembly still to be improved
- Moving to Self Excited Loop system

Improvement of measurement uncertainties

Quench studies

32 sensor array of OSTs

- Readout based on CEA-Saclay design
- Resolved issues with signal loss
 - Signal lines in cryostat replaced (coax→ twisted pair)
- Cleaned up signal to noise ratio by isolating OSTs from cavity and cryostat infrastructure
- Test new Transition Edge Sensors for quenches
 - Offers improved positioning resolution

Hernán Furci's talk

Quenches - 3 Varieties Observed

Local Quench

- Slow quench
 - Cell 1 equator
- 2nd sound velocity
 - V = 12.4 m/s

Global Quench

- Fast quench
 - cell 3 equator
- No localisation
- 2nd sound velocity
 - V = 18 m/s
- Double quench
 - Small quench
 without cavity trip

time [s]

0.001

OST 3

OST 4

0.02

-1.5

2017 ດົ ∞ June SLHiPP-7 at IPN Orsay

In-situ bulk RRR measurement

- Standard 4-wire resistance measurement
 - Measurement at 300K and at 10K
 - Resistance at 10 K: R~0.2 μΩ
 - Fixation of wires to cavity is critical

 $R_{subject} = \frac{Voltmeter indication}{Ammeter indication}$

Procedure validated on Crab Cavities

Cavity	Resistance at 300K $\mu\Omega$	Resistance @ 10K μΩ	RRR
DQW SPS 1	64.247 +- 0.282	0.189 +- 0.025	340 ± 45
DQW SPS 2	49.022 ±0.112	0.130 ± 0.005	377 ± 15

RRR on treated Nb samples = 290 ± 30

Upgraded Cryo Insert - Validated in 2016

- Improved insolation & cryostat now leak free
 - Infux heat flow reduced & electrical grounding scheme
- Cavity positioned lower in cryostat
 - Larger head of liquid Helium above cavity

OLD INSERT

NEW INSERT

Infrastructure: Cryostat insert upgrade

- New 'top' of vertical cryostat commissioned
 - Insert assembly, installation & load balancing
- Vacuum pumping system replaced
 - Increased diagnostics (including RGAs added)
 - Pneumatic valves on pumping line:
 - Avoids ambient B-field issues when opening shielding

Improvements - Mobile Coupler

Switch to mobile coupler in Q3 2017

- Test power antenna re-designed for beam port
- Coupler designed to work in 2K liquid helium
- 50 mm range of movement
 - => can have critical coupling from 10K to 1.8K
- Will allow improved conditioning and cavity processing

Cleanroom Practices

- Post 2016 HL-LHC Crab Cavity cleanroom tooling review
 - Re-tooling and improvement of ISO4 cleanroom infrastructure and practices
 - Reinforcement of cleanroom floor and purchase of cleanroom lifter matched to project needs
 - Removal of silver coated nuts/bolts from cavity assembly
 - Using silicon bronze nuts for flange assembly
 - Improved pre-assembly cleaning of pieces

Other Improvements

- Cleaner connection of cavity to insert pumping line
- Reduction of contamination during 650°C vacuum bake
 - Use niobium caps on all ports during bakeout
- Improved prep of cavity immediately prior to HPR
 - Ultrasonic bath after final chemistry essential

Outlook

HL-LHC Crab Cavity Program

Vertical Cryostat RF tests continue through 2017

High Gradient Program: 4 Cavities

- HG1: Chemistry re done \rightarrow Preparing for RF Test
- HG2: Achieved Specification: Now our reference cavity
- HG3: Bulk EP done. Sent to vacuum oven for 650°C bake
- HG4: Waiting for EP

High Gradient Program: Cavity Testing

- RF tests to be interleaved with Crab program in 2017
- Combine with commissioning of mobile coupler

Bulk Niobium program

- Target: 1 RF cold test per month per cryostat
- 2nd cryostat coming on line in Q3 2017

Summary

• CERN's Bulk Niobium program

- dominated by Crab cavity activities at present
- ... but still progressing with the High Gradient Program
- Soon to have 2 vertical cryostats dedicated to RF testing of bulk Niobium cavities

High Gradient: One cavity has reached specification

- Other three cavities to under go same treatment/testing
- Expect to finish initial test on all 4 cavities by Q1 of 2018

Ongoing developments

- Cataloging of quench behaviors and quench spot localisations prior to optical inspection
- Validated deployment of Self Excited Loop LLRF system and semi automation of test procedures
- Integration of mobile coupler into conditioning process

2017

ດົ

 ∞

SLHiPP-7 at IPN Orsay , June

Thank you

