

Low Level Radio Frequency System (LLRF) of the RFQ for MYRRHA

On behalf of MYRTE LLRF Team

MYRTE project has received funding from the EURATOM research and training program 2014-2018 under grant agreement N°662186)

SLHiPP-7 – ORSAY – 8th June 2017

LLRF of the RFQ for MYRRHA

Outline

- MYRRHA Context
- Specifications for LLRF
- LLRF system overview
- Status

MYRRHA context

Multi-purpose hYbrid Research Reactor for High-tech Applications

Goals :

- To build a hybrid reactor demonstrator for transmuting radiotoxic waste, (ADS).
- To product Radio Isotopes to medicine
- For fundamental research

High power proton beam (up to 2.4 MW)

Proton energy	600 MeV
Peak beam current	0.1 to 4.0 mA
Repetition rate	1 to 250 Hz
Beam duty cycle	10 ⁻⁴ to 1
Beam power stability	< \pm 2% on a time scale of 100ms
Beam footprint on reactor window	Circular Ø85mm
Beam footprint stability	< \pm 10% on a time scale of 1s
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited

---> Extreme reliability level

June 8th, 2017

MYRRHA context

MYRRHA Research and Transmutation Endeavour (MYRTE) :

The goal of MYRTE, a H2020 European project is to perform research to support the development of the MYRRHA facility during 4 years (may2015- may2019) with a main topic, the Injector demonstration within the framework of the WP2 :

WP2 : Accelerator R&D for ADS/MYRRHA

- D2.1 Realisation of a full-size MYRRHA-type RFQ demonstrator (IAP) (M30)
- D2.2 Construction of a prototype Solid State RF power amplifier (IBA) (M30)

D2.3 Digital LLRF development (CNRS) (M30)

- D2.4 Beam diagnostics development (CEA) (M48)
- D2.5 Control system development in a highly reliable accelerator context (COSYLAB) (M48)
- D2.6 Beam simulation code development, global coherence (CEA) (M48)
- D2.7 Injector commissioning (SCK•CEN) (M48)
- D2.8 Space-charge experiments (CNRS) (M30)
- D2.9 LINAC4 reliability analysis (CERN) (M48)
- D2.10 MYRRHA SRF spoke R&D (CNRS) (M30)
- D2.11 SRF CH demonstration with beam (IAP) (M30)
- D2.12 MYRRHA linac cost estimation (SCK•CEN) (M18)

RFQ

Length	: 4 m
Frequency	: 176.1MHz
Bandwidth	: 83.8 kHz
N1	400114/

- Nominal power
- Commissioning
- :108kvv
 - : Pulsed with duty cycle =1% min to CW

LLRF budget :

Amplitude stability : +/-0.2% rms Phase stability : +/-0.2° rms

budget error to share between 3 parts : -the Phase Reference Generation System -the Phase Reference Distribution System -the A&P feedback system \rightarrow Worst case : +/-0.1% rms and +/-0.1° rms each

LLRF and Phase references generation systems

Duration : 2.5 years with ~ 1.5 FTE/ year Interfaces with a lots of systems as Machine Protection System (MPS), Safety Protection System (SPS), RF Power Amplifier (RF SSPA), Frequency Tuning System (FTS),...

June 8th, 2017

LLRF Basic Scheme

June 8th, 2017

To re-use RF developments :

- Down converter system (352MHz to 10MHz) developed within the framework of a LLRF R&D with the PXI standard. The adaptation to 176.1MHz to 10MHz is limiting due to a PCB using components with the same footprints in the frequency range 88,05MHz to 704.4MHz.

→Intermediate Frequency signal is not ideal for limiting the latency but easy to obtain in the case of a test bench.

(output available in rear of RF synthesizer)

- Analog Self Exciting Loop used for testing superconducting cavities with an adaptation to synchronize the RF with the Phase reference signal.

→ More hardware than digital SEL (of course) but it's operating with more 50dB dynamic.

Courtesy S. Berthelot

June 8th, 2017

To re-use RF developments : -Phase References Generation System

LLRF prototype Choices

Frequency (мнz)	Jitter rms (°)	Noise Phase (fs) (1Hz-1MHz band)
176.1	0.037	591
352.2	0.082	651
704.4	0.170	670

Test with SML03 synthesizer Instead of the 88.05MHz PLL + filter

Frequency (MHz)	Jitter rms (°)	Noise Phase (fs) (1Hz-1MHz band)
176.1	0.018	288
352.2	0.037	290
704.4	0.072	285

 \rightarrow New PLL bought but not still implemented

June 8th, 2017

C. Joly – LLRF of the RFQ

To re-use :

- An in-house Digital board (DALTON) using a XILINX FPGA associated to a ARM processor with a PCIe link. Also less software developments (driver PCIe Ok) like an Off-the-shelf solution

Digital Mother Board developed at IPNO (courtesy Beng-Yun Ky)

Debian 8 « Jessie » implemented with an SATA hard disk (Scientific Linux won't work for ARM based architecture)

June 8th, 2017

To use :

- ADC mezzanine FMC board Off-The- Shelf form 4DSP (FMC104) : 4 channels

→ Low Pin Count (LPC 160 pins) compatible but in this case, Clock tree and ADC configurations are not possible! In fact it's a FMC108 without some front-end components then operating also on a HPC slot (400 pins)

LLRF prototype Choices

To develop :

- DAC&AUX mezzanine FMC board prototype

Courtesy J-F. Yaniche

→ Low Pin Count (LPC 160 pins) only but many interfaces connectors implying micro connectors,
8 layers with differential lines, controlled impedance
50 Ohm and 100 Ohm on the same layer, ...

 \rightarrow Order for PCB passed

June 8th, 2017

VHDL for LLRF system

To develop :

- VHDL software : Main loop example

→ Code in progress with a important part about registers access with the communication protocol

Courtesy T. Le Ster

June 8th, 2017

EPICS for the LLRF system

June 8th, 2017

Actual tasks in progress

- VHDL Code : ADC configuration, ADC readout, IQ demodulation, PID done but still a lot of work .
- System Integration : close to the end
- EPICS : records processing and OPI in progress

Goals

- Tests of the whole system with our test bench in September
- Digital Self Exciting Loop development

→ In parallel, we are progressing about a MTCA version using a major part of the LLRF prototype features within the framework of MYRRHA R&D 100MeV

Thank you for your attention

June 8th, 2017