

Status of MultiGrid Detector Development for CSPEC and TREX

Anton Khaplanov Isaak Lopez Higuera

www.europeanspallationsource.se Sep 28, 2017

Outline

EUROPEAN SPALLATION SOURCE

brightness

B10 detector development (Anton Khaplanov)

Multi-Grid detector Characterization highlights Intrinsic background suppression Gamma sensitivity Current development

Multi-Grid ToF results from CNCS, SNS

Engineering the Multi-Grid (Isaak Lopez Higuera) MG.CNCS MG.SEQ Conceptual design for CSPEC

EUROPEAN SPALLATION SOURCE

Multi-Grid Prototypes for Characterization

Measurements:

- Absolute efficiency
- Uniformity
- Position reconstruction
- γ sensitivity
- Rate tests
- Ageing

First Multi-Grid tested on an Instrument

Detector tested on cold chopper spectrometer IN6 @ILL

- Active Area 30 x 45 cm2
- 96 grids in 6 modules of 16 grids, 360 anode wires
- Operated for ~2 weeks, replacing 25 He3 tubes
- @ 4.1, 4.6 and 5.1 Å incoming wavelength

Main topics of the test:

- First ToF spectra
- Background investigation
- Elastic line shape

EUROPEAN SPALLATION

シブ SOURCE

time channel

Intrinsic background

0.5

0

Spectrometers work with a very large dynamic range \rightarrow very high signal-tonoise is required.

Intrinsic background often found in Al due to α emitter impurities (U and Th).

2

energy, MeV

A. Khaplanov et al. 2015 JINST 10 P10019

3

Spectrum from standard Al

⁷Li α

 α decay U, Th

2

energy (MeV)

1

3

0.08

even (Hz) 0.00 (Hz) 0.04

0.02

0

FOR SCIENCE **uate / channel (Hz**) 0.010 0.000 0.0004 0.0004 Чe ¹⁰ A cst * (¹⁰B - 4.4 Hz bkgd) 1000 900

NEUTRONS

γ Sensitivity Investigated

0

200

400

timestamp

600

800

1000

* A. Khaplanov et al., JINST 8, P10025 (2013), arXiv:1306.6247

shielding

Beam + source setup for γ sensitivity measurement

count rate (kHz)

EUROPEAN SPALLATION SOURCE

htn**ess**

rin

High statistics ¹³⁷Cs measurement

Test on CNCS, Cold Neutron Chopper Spectrometer

- A kind offer by K. Herwig to test MG at SNS
- Recommendation of 2015 ESS annual review Goals:
- Test at spectrometer
- Side-by-side comparison to He3
- In parallel with user experiments
- Dedicated tests

Solution:

- Size = half of "8-pack" module 1.1m x 19cm
- Installation June-July 2016
- Operated July 2016 to June 2017

EUROPEAN SPALLATION SOURCE

Multi-Grid installed at CNCS

Detector installed at 57° scattering angle

Inaccessible between summer and winter 1.1m shutdowns

DAQ setup outside, accessible remotely

Front-end

electronics, Mesytec

Methods Used for Tests

EUROPEAN SPALLATION SOURCE

Elastic Energy Resolution

EUROPEAN SPALLATION SOURCE

NEUTRONS FOR SCIENCE

Efficiency

Counts from integral of the elastic peak in dE Efficiency measured relative to the nearest He3 tubes Error bars: 5-8%, agrees with prediction

Single Crystal Reflection

Reflected beam at

Reflected beam at

No loss of position resolution or

saturation observed in Multi-Grid

 $E_i = 13.74 \text{meV}$

 $E_{i} = 17.20 meV$

A single crystal reflects neutrons according to Bragg's law:

 $n\lambda = 2d\sin(\theta/2)$

Resulting in an intense spot seen by detector

Crystal

Incident

beam

ALL DO DO DO

Energy Ranges for ESS Spectrometers

EUROPEAN SPALLATION

SOURCE

Efficiency Optimizations

EUROPEAN SPALLATION SOURCE

Layer thicknesses in MG.CNCS (16 blades): 7 blades 0.5μm, 7 blades 1.0μm, 3 blades 1.5μm

Thermal optimization

20 blades total: 4 blades 1.0μm, 10 blades 1.25μm, 6 blades 2.0μm. brightness

Efficiency as a function of wavelength for MG optimized for cold vs. thermal spectrum

- Cold optimization centered on 4Å
- Thermal optimization centered on 1Å

*F. Piscitelli, P. van Esch, 2013 JINST 8, P04020

Multi-Grid Thermal Demonstrator test

Proposal made to do the test at SEQUOIA, at SNS

In addition to what was done for CNCS test:

Performance in thermal (and epithermal) flux Efficiency optimization Energy resolution Line shape Scattering

Detector construction Vacuum compatibility

Online data acquisition, visualization and diagnostics (to be developed by DMSC)

MG.CNCS

- Installed at SNS in the CNCS instrument during June 2016
- Optimized for cold neutrons •
- 2 columns of 48 grid each
- Active area 1100 x 185 mm
- Voxel volume 22.5 x 22 x 11 mm

1394 x 200 x 250mm

MG.CNCS

EUROPEAN SPALLATION SOURCE

MG.SEQ

EUROPEAN SPALLATION SOURCE

Installation proposal at SNS in the SEQUOIA instrument

- Test with thermal/epithermal neutrons
- First large area detector under vacuum
- Mounted in the lower bank ~5m and 25° from sample

MG.SEQ

EUROPEAN SPALLATION SOURCE

Installation proposal at SNS in the SEQUOIA instrument

- 9 columns, 40 grids in each
- Telescopic sliders to access grid assemblies
- Use of inclined wedges so all grids are at the same distance from the sample

MG.SEQ

EUROPEAN SPALLATION SOURCE

- Intermediate PCB layer, separates both atmospheres
- Groove in the cover to guide flat cables to the PCB layer
- Electronics plugged to the PCB layer

Mesytec 128 channel front-end Preamp, shaper, multiplexer 60 x 140 x 20 mm³ 1 per detector module 9 required in total

- 3mm thickness window
- 8 rows of 10 rods, Ø3mm

Amplified 80 times

1.2551 Max 0.00 300.00 600.00 (mm) 150.00 450.00

Amplified 80 times

Equivalent stress

MG.SEQ FEA of the vessel

A: Static Structural Figure Type: Total Deformation Unit: mm Time: 1

> 1.1156 0.97619 0.83673 0.69728 0.55782 0.41837

> 0.27891 0.13946 0 Min

Total deformation

CSPEC at ESS

Cold spectrometer 0.2 meV < E_i < 20 meV 29m² detector Horizontal coverage 5° to 135° Vertical coverage -25° to 25°

EUROPEAN SPALLATION SOURCE

C-SPEC

• Neighbour vessels configuration, minimizing dead spaces

Conclusion

- Multi-Grid developed and characterized.
- Large-Area detectors possible again
- Operated at CNCS over 11 months.
- Multi-Grid baseline detector for CSPEC and T-REX at ESS
- Test at SEQUOIA proposed
- Instrument-focused design is underway

Thanks to the colleagues at SNS for this opportunity and cooperation!

Horizon 2020 grant agreement 676548 WP 4.3: Large-Area Detectors

EUROPEAN SPALLATION

SOURCE

brightness

PREPARED FOR SUBMISSION TO JINST

Multi-Grid Detector for Neutron Spectroscopy: Results Obtained on Time-of-Flight Spectrometer CNCS

M. Anastasopoulos,^a R. Bebb,^a K. Berry,^b J. Birch,^c T. Bryś,^a J.-C. Buffet,^d J.-F. Clergeau,^d P. P. Deen,^a G. Ehlers,^e P. van Esch,^d S. M. Everett,^b B. Guerard,^d R. Hall-Wilton,^{a,f} K. Herwig,^g L. Hultman,^c C. Höglund,^{a,c} I. Iruretagoiena,^a F. Issa,^a J. Jensen,^c A. Khaplanov, ^{a,1} O. Kirstein,^{a,h} I. Lopez Higuera,^a L. Robinson,^a S. Schmidt,^{a,c} I. Stefanescu,^a ^aEuropean Spallation Source, P.O Box 176, SE-22100 Lund, Sweden ^bInstrument and Source Division, Spallation Neutron Source, 1 Bethel Valley Road, Oak Ridge, TN 37831-6476, USA ^cLinköping University, Thin Film Physics division, IFM, SE-581 83 Linköping, Sweden ^dInstitute Laue Langevin, 71 avenue des Martyrs, FR-38042 Grenoble, France ^eQuantum Condensed Matter Division, Spallation Neutron Source, 1 Bethel Valley Road, Oak Ridge, TN 37831-6475, USA f Mid-Sweden University, SE-85170 Sundsvall, Sweden ⁸Instrument and Source Division, Spallation Neutron Source, 1 Bethel Valley Road, Oak Ridge, TN 37831-6466, USA ^hSchool of Mechanical Engineering, University of Newcastle, Callaghan, Australia E-mail: Anton.Khaplanov@esss.se ABSTRACT: The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of He-3 detectors on an operational instrument. The demonstrator has an active area of 0.2m². It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since

2017 JINST 12 P04030

(https://arxiv.org/abs/1703.03626)

Acknowledgements and Publications

<u>ILL:</u>

Bruno Guerard, Jean-Claude Buffet, Jean-Francois Clergeau, Anthony Leandri, Victor Buridon, Fabien Lafont

<u>ESS:</u>

Anton Khaplanov, Richard Hall-Wilton, Oliver Kirstein, Tomasz Brys, Michail Anastasopoulos, Isaak Lopez Higuera, Carina Höglund*, Linda Robinson*

<u>Centre for Energy Research (Hungary):</u> Eszter Dian

Linköping University: Jens Birch, Lars Hultman, (also *)

<u>SNS:</u>

Ken Herwig, Georg Ehlers, Michelle Everett, Kevin Berry

Earlier – the participants of the CRISP project on Large-Area detectors.

brightness

EUROPEAN SPALLATION

SOURCE

Horizon 2020 grant agreement 676548

WP 4.3: Large-Area Detectors

Earlier publications:

B4C layers:

*C. Höglund et al, J of Appl. Phys. 111, 104908 (2012) <u>Characterization:</u>

*A. Khaplanov et al., arXiv:1209.0566 (2012)

*B Guerard et al., NIMA, 720, 116-121 (2013),

http://dx.doi.org/10.1016/j.nima.2012.12.021iJ

*J. Correa et al., Trans. Nucl. Sc. (2013), DOI: 10.1109/TNS. 2012.2227798

*A. Khaplanov et al., (2014) *J. Phys.: Conf. Ser.* **528** 012040 doi:10.1088/1742-6596/528/1/012040

<u>Gamma sensitivity:</u>

*A. Khaplanov et al., JINST 8, P10025 (2013), arXiv:1306.6247 <u>Alpha background:</u>

*A. Khaplanov et al., JINST 10, P10019 (2015); doi:10.1088/1748-0221/10/10/P10019

Latest publication:

A.Khaplanov et al. *"Multi-Grid Detector for Neutron* Spectroscopy: Results Obtained on Time-of-Flight Spectrometer CNCS" <u>https://arxiv.org/abs/1703.03626</u> 2017 JINST 12 P04030

Extra slides

EUROPEAN SPALLATION SOURCE

IN5 Demonstrator – Large-Scale

brightness

EUROPEAN SPALLATION SOURCE

NEUTRONS FOR SCIENCE®

Module x8: wire-frame coincident readout

Grid x1024: low activity, minimal dead material

80cm **Detector:** 2.4 m² active area

Blade x18432: enriched B4C coating good adhesion, uniformity,

Aluminium Bragg Edge

 10^{-1}

EUROPEAN SPALLATION SOURCE

FOR SCIENCE

brightness

Multi-Grid

MM.

0.8

0.4

0.6

0.2

He3

Energy Reconstruction

SPALLATION SOURCE

EUROPEAN

Single Crystal Reflection

Multi-Grid image

View from sample 10 15 **Multi-Grid** Image recorded in each 20 detector as a function of 25 time during elastic peak Detector 30 height, voxel # 35 Each frame advances 30 µs 40 Increasing 45 scattering ToF, Multi-Grid, UGe2, 180225, freg 300 angle, voxel # 10⁶ 10⁵ He3 bank #49 and #50 10⁴ 20 View from sample stun 10³ He₃ 40 10 60 10¹ Detector 4000 6000 8000 10000 12000 14000 16000 80 time, us height, pixel # 100 No loss of position resolution or Increasing saturation observed in Multi-Grid scattering 120 angle, pixel #

EUROPEAN

SPALLATION

SOURCE