

Beam monitoring on Bifrost

Requirements/wishlist for the detector group

Rasmus Toft-Petersen Technical University of Denmark

Instrument layout

EUROPEAN

SPALLATION SOURCE

 \rightarrow

Front end – ToF diagram **ess**

EUROPEAN SPALLATION SOURCE

source

Backend

Front end – ToF diagram 😁

Flux curve: The variation In flux is between 10¹⁰ n/s/cm2/Å and 2*10⁸ n/s/cm2/Å.

a factor of 50 variation.

Cold flux at fully open: 10¹⁰ n/s/cm2/Å

Cold flux at 0.1 ms: 5*10⁸ n/s/cm2/Å

Near thermal flux at 0.1 ms: 10⁷ n/s/cm2/Å

Goals of monitoring

UROPEAN SPALLATION SOURCE

- Diagnostics
- Normalization

Subgoals of normalization on Bifrost:

- 1. High precision at high flux
- 2. Allow for flux changes on minute timescale
- 3. Do normalization with a complex frame intensity profile

Time of flight

- Maximum transmission requires calibrated choppers
- To convert T.O.F to energy, wavelength, momentum transfer, d-space.
 - Precise knowledge of flight paths
 - Definition of T0 in the time frame
- Precise knowledge of scattering angle
- Geometry is essential

Monitors are useful

What is T₀

- Moderator has a depth
- Emission point of neutrons is wavelength dependent - uncertainty in flightpath
- Reposition source onto a monitor (in software)

Diagnostics

EUROPEAN SPALLATION SOURCE

Diagnostics

EUROPEAN

SPALLATION SOURCE

255

Normalization

EUROPEAN

SPALLATION SOURCE

Real life (I)

Real life (2)

Front end – ToF diagram

Binning

Time

The flux might be changing, but not much on a time scale smaller than the pulse duration.

But you might want

Wavelength band - 1.2-2.9 Å Flux: **10⁷ n/s/cm2/Å** Pulse duration: 0.1 ms.

Lets say we need a sampling 3 times better than the pulse duration – **2000 bins**

If we want flux determination better than 1,5 % in each bin we need 5000 cts pr bin:

This is 10⁷ counts. We would need 0.5 % efficiency at 1.2 Å in 3 mins. That would normally go to 2.5 % at 6 Å.

Gigahertz range... Safety, attenuators, another monitor? Argh.

Conclusion

- As everybody else, we need monitors for normalization and diagnostics
- Our normalization case is messy
- The monitor will be too efficient at large wavelengths. Possibly a nasty problem...
- We will go for being able to normalize properly during 3 mins
- We won't go for single pulse normalization.
- We would like eventmode, to have full flexibility.

