

Status of the BAND-GEM detector

G. Croci^{1,2,3}, A. Muraro¹, G. Grosso¹, E. Perelli Cippo¹, G. Albani³, G. Claps⁴, F. Murtas⁴, M. Rebai^{2,4}, M. Tardocchi¹, C. Höglund^{5,6}, L. Hultman⁶, J. Birch⁶, S. Schmidt⁶, L. Robinson⁶, R. Hall-Wilton^{6,7}, D.Raspino⁸, N. Rodhes⁸, E. Shooneveld⁸ and G. Gorini^{3,4}

¹Istituto di Fisica del Plasma (IFP-CNR) – Via Cozzi 53, 20125 Milano, Italy
²INFN – Sez. Di Milano-Bicocca – Piazza della Scienza 3, 20126 Milano, Italy
³Dipartimento di Fisica, Università degli Studi di Milano-Bicocca –
Piazza della Scienza 3, 20126 Milano, Italy
⁴INFN – Laboratori Nazionali di Frascati –Via Fermi 40, 0044 Frascati, Italy
⁵European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund, Sweden
⁶Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden
⁷Mid-Sweden University, SE-851 70 Sundsvall, Sweden
⁸IFE: ⁸STFC-RAL, ISIS facility, Didcot, Uk

From 2011 to present-day

- bGEM
- BAND-GEM Prototype
- BAND-GEM Demonstrator
- Improved BAND-GEM Demonstrator
- BAND-GEMPIX
- BAND-GEM detector option for LOKI
- Full Module

bGEM

SHOULD WE DETECT THERMAL NEUTRONS WITH GEMS?

- GEM detectors born for tracking and triggering applications (detection of charged particles)....
- ...but if coupled to a solid converter they can detect
 - Thermal Neutrons \rightarrow ¹⁰Boron converter
 - Neutrons are detected using the productus (alpha,Li) from nuclear reaction ¹⁰B(n,alpha)7Li
- GEMs offer the following advantages
 - High rate capability (up to MHz/mm²) suitable for high flux neutron beams like at ESS
 - Submillimetric space resolution (suited to experiment requirements)
 - Time resolution from 5 ns (gas mixture dependent)
 - Possibility to be realized in large areas and in different shapes
 - Radiation hardness
 - Low sensitivity to gamma rays (with appropriate gain)

WHAT IS A GEM?

A Gas Electron Multiplier (F.Sauli, NIM A386 531) is made by 50 μ m thick kapton foil, copper clad (5 μ m thick) on each side and perforated by an high surface-density of bi-conical channels;

Applying a potential difference (tipycally between 300 and 500 volts) between the two copper cladding, an high intesity electric field is produced inside the holes (80-100 kV/cm).

GEM is used as a proportional amplifier of the ionization charge released in a gas detector.

Triple-GEM detectors

Layout of a typical Triple GEM detector constructed with standard 10 x 10 cm².

made of Aluminate Mylar or Fiberglass

total of 128 channels.

chosen according to the application of the detector.

FEE: CARIOCA GEM chip cards

CARIOCA chip cards

The card is based on Carioca GEM Chip and has been designed and realized in Frascati (LNF, Gianni Corradi); Total dimension : 3x6 cm² 16 channels for each card: channel density of 1 ch/cm² Sensitivity of 2-3 fC,LVDS output (25 ns), Radhard.

New GEMINI chip: can manage 16 channels, in comparison to the 8 channels of the old one.

It will be able to measure also the charge released in the drift gap (not used here)

FEE: FPGA Mother Board

We have an Intelligent Mother Board with an FPGA (Field Programmable Gate Array) on board able to count the 128 channel hits and/or measure the time respect to a trigger (1 ns) ; the data are readable through an Ethernet connection (LNF A.Balla, P.Ciambrone, M.Gatta).

High Voltages: NIM standard HVGEM module

nano-Ammeter which measures the current with a sensitivity of 10 nA.

GEM detector for thermal neutrons (bGEM)

- Triple GEM detector equipped with an aluminum cathode coated with 1 μ m of B₄C
- Exploits the ${}^{10}B(n,\alpha)^{7}Li$ reaction in order to detect thermal neutrons
- $\Delta V_{GEM} = \Sigma V_{GEM} = 870 V$
- Gain ≈ 100
- Ar/CO₂ 70%/30% (5 l/h) n

Detector Schematics

B₄C coated aluminium cathode mounted on its support

 B_4C coated aluminium cathode assembled inside the bGEM chamber layout

Natural B: Low efficiency detector: 1%

Enriched ¹⁰B: 5% efficiency

G3-2 irradiation station at the ORPHEE reactor (LLB-Saclay)

Thermal ($E_{\text{peak}} = 3.5 \text{ meV}$) neutron flux:

7.88 x 10⁸ n/s cm²

Full beam about 2cm x 3 cm (6 pads....)

* BGEM: triple GEM with $B_4C_$ deposited cathode Ar/CO₂ 70/30 (5 l/h) V = 870 V (gas gain = 100)

*Borated cathode from HZ Geesthacht

LINEARITY (comparison with fission chamber) 1.8 mm calibrated plastic slabs credited with a beam reduction of a factor 2 each

y = a x / (1 + b x)

x = FC rate; y = GEM rate

a = 3,5191e+06 [Hz/(pad a.u.)] b = 0,028143 [a.u.-1]

dead time of the detector+electronics system = b/a = 5.7 ns

This value is compatible with GEM time resolution which is around 5 ns for this gas mixture

Test of bGEM detector for neutron diffraction measurements

- bGEM with enriched borated cathode
- Cd mask and **rough** collimator
- The bronze sample is different
- The same bGEM position (90°) was no longer available → FOCUSSING

Comparison GEM vs ³He tubes

BAND-GEM PROTOTYPE

¹⁰B₄C Coating on the lamellas

Deposition done by Dr. Carina Hoglund

1 μ m ¹⁰B₄C coating on both sides

Determined by neutron absoprtion measurements (at ISIS-ROTAX)

Detector Assembly

An aluminium cathode (few microns thick) has been mounted on top

Detector test with X-Rays

Detector completed

Test with X-Rays (in IFP-lab)

Detector test at IFE (JEEP II Reactor, RD2D beamline)

Monochromatic neutron beam: possibility to select two wavelenghts: $\lambda = 1.54$ Å, E = 34.5 meV $\lambda = 2$ Å, E = 20.45 meV Possibility to set different beam sizes

22

where if $\lambda = \lambda_0 = 1.54$ A $\epsilon = \epsilon_0 = 0.15$ for 10 degrees and $\epsilon = \epsilon_0 = 0.20$ for 7 degrees

BAND-GEM DEMONSTRATOR

BANDGEM Demonstrator Electrons extraction Simulation

2.9

2.8

Percentage 48.6

B4C=3mm 2.7 GAS=1mm 2.6 2.5 2.4 2.3 2.2 -0.15 -0.1 -0.05 -0.2 0 0.05 0.1 0.15 0.2

Demonstrator Geometry

4mm

Volumetric Simulation (1000 e-) Diffusion ON Good Electron 1000, Out Electron 544 Percentage 54.4

Volumetric Simulation (1000 e-) Diffusion OFF Good Electron 1000, Out Electron 670 Percentage 67

Performance: Prototype and Demonstrator

Out Primary Electrons (keV - equivalent)

Extracted Primary Electrons in Ar/CO₂ 70%/30%

BAND-GEM demonstrator simulation

Numerical Simulation of Neutron conversion efficiency

10

5x10 cm² active area detector

Strip thickness = 200 μ m Al + tensioning screws

128 read-out pads of different sizes

Detector Anodic Pads – 5x10 cm² active area

- Three different types of pads representative of final geometry
 - Small 4x3 mm²
 - Intermediate 4x6 mm²
 - Large 4x12 mm²
- 64 BANDGEM pads (half detector) connected to DAE
- For each pad (from 65 to 128) DAE-TOF spectra are produced:
 - Single hits
 - Multiple hits (channel number > 128): more than one pad hit in same time-bin
- 2 noisy pads

Nominal 1 µm of ¹⁰B₄C DEPOSITION @ ESS Workshop (Linkoeping)

New BAND-GEM detector assembly (1)

Stack of 24 grids with spacers

Electropolished

Boronization completed 08/2016

BANDGEM demonstrator

Detector box equipped with three diagnostic windows 75 mm x 100 mm Borated Grids – 0.55 μ m $^{10}B_4C$

Tests @ EMMA (ISIS)

Time of Flight Spectra – EMMA 1 Å < λ < 4 Å

$$P_{ANDGEM,PAD_{i}}(t = \lambda) = \int_{t=t_{1}}^{t-t_{2}} MS BandGEM_{i}(t)dt$$

 $Mon(t = \lambda) = \int_{t=t_{1}}^{t=t_{2}} MS Monitor(t)dt$

t - t m c

λ(Å)	TOF (μs)
1	4000
2	8060
3	12560
4	17060

$$\varepsilon_{GEM}(\lambda) = \frac{C_{GEM}(t=\lambda)}{C_{Mon}(t=\lambda)} * \varepsilon_1$$

Monitor Efficiency previously calibrated using ³He tube

Beam footprint

$$I_{GEM} = \sum_{ON-pads} \int_{t=4 ms}^{t=20 ms} BandGEM(t)dt$$

ON-pads are defined as pads whose intensity is > 1% of the pad with the max intensity

Beam dimension 4 mm (t) x 4 mm (y)

Colour = I_{GEM}/Pad Area
Efficiency (at 1 and 2 A) vs tilt angle

Good agreement with simulated values ¹⁰B4C thickness 550 nm

Efficiency vs tilt angle

Simulation with 900 nm ¹⁰B4C thickness

Simulation of detector efficiency as a function of ¹⁰B₄C thickness

- Alpha and Li ion escape efficiency from a 550 nm thick ${}^{10}B_4C$ layer = 75%
- Assumes the measured extraction efficiency in the simulation model

Space resolution (FWHM) vs tilt angle

Good agreement with simulated values Experimental corrected for offset by about 5 degrees Effective resolution \sim independent of λ

Efficiency uniformity @ $\lambda = 1 \text{ Å}, \Theta = 5^{\circ}$

Efficiency values all over the active area are well represented by a gaussian function with a mean of 18% and a FWHM of 2%.

High rate test at the ORPHEE Reactor @ LLB-CEA

Neutron Flux = $7.88 \times 10^8 \text{ n/cm}^2\text{s}$

Linearity scan of BAND-GEM demonstrator relative to Fission Chamber, performed at reactor power 10.1 MW. The BAND-GEM is linear (relative to the reference FC detector) up to about 5 MHz/ cm².

Black dots: BANDGEM count rates per cm²; red line: fit of the data with saturation law; purple line: linear component of the saturation law.

Width of lateral diagnostic window = 75 mm

IMPROVED BAND-GEM DEMONSTRATOR

Improved BANDGEM demonstrator

Detector box equipped with three diagnostic windows 75 mm x 100 mm Borated Grids – 0.91 μ m of ${}^{10}B_4C$ GEM in the middle of the stack Cd sheet on one side for 3D stack

TREFF-FRMII Test (18-22 Sept 2017)

• $\epsilon > 45\%$ at $\lambda = 4.73$ A

TREFF-FRMII Test: Scan 90 degrees

TREFF-FRMII Test: Stability measurment

BAND-GEMPIX

First BAND-GEMPix detector

BAND-GEMPix converter Components

BAND-GEMPix: detector assembly

First BAND-GEMPIX assembly test

3D view

BAND-GEMPIX Assembly

• Small area (4x4 cm²) BANDGEM read-out by a Quad-Timepix2 chip. Very useful to study BANDGEM space resolution

BAND-GEMPIX Results

• TREFF-FRMII Test (18-22 Sept 2017). Monochormatic beam 1x1 mm² along the x axis

Li and α cluster dimension along y (parallel to the strips) **About 2 mm**

BAND-GEM for LOKI

LOKI BAND-GEM Reference parameters

d s-D = 5 m					
	ϑ _{TILT}	ϑ _{LOW}	ဗီ MIDDLE	ϑ ніցн	
	2.4°	2.83°	4.86°	7.41°	

LOKI σ_Q/Q resolution using BANDGEM $(\sigma_Q)^2 = \frac{k^2}{12} \left[\frac{x_1^2 + y_1^2}{2L_1^2} + \frac{x_2^2 + y_2^2}{2L'^2} + \frac{x_3^2 + y_3^2}{L_2^2} + \frac{R^2}{L_2^2} \left(\frac{\Delta \lambda}{\lambda} \right)^2 \right]$

Colour plot of σ_Q/Q values on the (L₂,R) plane. L₂ is between 0 and 11 m and R between 0 m and 1.5 m. Parameters used x₁=y₁= 5 mm, x₂=y₂= 2.5 mm, λ = 5 A, pixel size 12 mm x 12 mm. Detector position is approximate

Front Detector

Low Angle Detector

Low Angle Detector

To cover the required area:

• N.4 45 Degrees detectors

BANDGEM detector module and related front end electronics

Design parameters for LOKI low angle detector

Lamella Distance	4 mm	
B ₄ C/empty ratio on lamellas	3	
Full Lamella System lenght	96 mm	
Lamella Thickeness	200 µm	
Lamella Material	Aluminium	
Optimal tilt angle	2.4 degrees @ 10 m	
Pulse Height Threshold	100 keV	
Cathode geometry	Trapezoidal	
Count Rate Capability	> 5 MHz/cm ²	
Gamma Ray Sensitivity	10-7	
Expected Efficiency @ 2.2 Å	37%	
Expected Efficiency @ 6 Å	55%	
Front-end ASIC	GEMINI – 16 channels/chip	

Total active area: 647 cm²

Full Module

Low Angle Detector: full module

Vacuum Box (reference plane orthogonal to the beam direction)

45 degrees Detector: Converter Grids

Full Module Detector: Cathode assembly +22 66

Full Module Detector: GEM foil and frame

Sectorized GEM (design in progress). GEM foil stretched and glued to its frame as usual.

Full Module Detector: ReadOut Anode

45 degrees Detector: Detector Assembly

(old electronics layout)

Full Module MockUp and First Grids

Full Module (27/9/17)

Full Module (27/9/17)

Front End Electronics

The demonstrator electronics is based on Carioca Chips.

Digital Chip with 8 channels Equips the LHCb GEM detectors Fast chip – used for triggering Adapted from MWPC

New chip tested: the GEMINI chip. Mixed analog and digital 16 channels/chip. Designed for BANDGEM

Conclusions

- Improved construction design using waterjet-cut grids
- Main parameters:
 - Efficiency @ 4 A > 45%
 - Resolution (FWHM) about 7 mm
 - Rate capability about 10 MHz/cm²
- Competivite for SANS (Small angle neutron scattering applications)
- Full module for LOKI is being realized and will be tested next year

Thanks from... the BANDGEM band