

EUROPEAN SPALLATION SOURCE

Heavy Shutter, Bunker insert and neutronics for the teast beam line

Valentina Santoro Phil Bentley Gabor Laszlo ESS

- Brief overview of the test beam line and neutronics calculations
- Heavy Shutter calculations
- Bunker insert activation studies

Test Beam Line parameters (I)

ROPEAN ALLATION JRCE

Summary of main components:

Nr	Component Name	Distance from TCS	Properties
1.	Monolith Insert	2.7m- 5.5m (2.8m)	Penetration (Assymmetric! With 2mm gap-around beam): 204.5mmx45.7mm- >108.5mm (32.7mm (Hz x V)
2.	Gamma Shutter Insert	5.5m-6m (0.5m)	ID120mm /5mm B4C attenuator inside Argon filled
3.	Flight Tube 1.	6m-7.4m (1.4m)	ID120mm /5mm B4C attenuator inside
4.	Stationary Collimator	7.4m- 8.2m (0.8m)	63mmx28mm- 36mmx34mm (Hz x V) /10mm larger (around) than the beam/ /Copper with lead shielding around
5.	Adjustable Collimator	8.3m- 8.5m (0.2m)	310mmx260mm (Hz x V), Ø3mm 15deg cone angle /Initial composition: Fe+Pb+Mirrobor+Pb+Fe/
			MR304_2000_00_PE pdf

	6.	Pinhole	8.5m	1mm thick Cd, Ø0.5mm, Ø1mm, Ø1.5mm, Ø2mm MR304-2000-00-PE.pdf
	7.	Double Disk Chopper	8.6m	D=500mm, 2000RPM MR Chopper general .pdf MR304-3000-00-PE.pdf
	8.	Flight Tube 2.	8.7m- 9.5m (0.8m)	ID120mm /5mm B4C attenuator inside
	9.	Heavy Shutter	9.5m- 11.3m (1.8m)	Attenuator: 400mmx300mm*1600mm /Pb+HDPE+B4C+Copper+Pb/
	10.	Bunker Wall Insert	11.5- 15m (3.5m)	Steel insert. Penetration: (Assymmetric! With 2mm gap around beam): 108.4mmx24.2mm -> 228.4mmx55.3mm (Hz x V)
	11.	Detector	17m	Area: 300mmx300mm
	12.	Beam Stop	17.5m	

with ~21 cmx5cm aperture in the monolith

and straight guide

Test Beam Line parameters (II)

EUROPEAN SPALLATION SOURCE

Test Beam Line is really the bad* guy of the ESS beamlines

* from shielding point of view

Engineering Model MCNP Model

MCNP Model for target +Bunker+instrument hall +instrument cave produced with Comblayer package developed by Stuart Ansell <u>https://github.com/SAnsell/CombLayer</u>

Test Beam Line @ W11

ROPEAN ALLATION URCE

some numbers

5.5 m out the monolith

 Φ = 2.5e+10 (n/s*cm²) Flux

Total number of neutrons in the beam $\Phi x A = 3.1e+12 n/s$

A is the size of the opening at the end of the monolith

```
Total dose= 474200 Sv/h
```

15 m out the bunker wall

 Φ = 1.05e+07 (n/s*cm²) Flux

Total number of neutrons in the beam $\Phi x A = 1.31e+09 n/s$

A is the size of the opening at the end of the bunker wall

Total dose= 400 Sv/h

Spectra Out of the monolith

ROPEAN ALLATION URCE

Test Beam Line: Big Opening Straight instrument Loki: Bender in the monolith

Heavy Shutter Current Design

Shutter Design (width 17 cm, height 14 cm, lenght 152 cm)

ROPEAN ALLATION JRCE

Heavy Shutter <u>Neutron</u> Dose Rate in the bunker

Heavy Shutter <u>Neutron</u> Dose rate, from the bunker wall to the end of the bunker wall

Heavy Shutter <u>Photon</u> Dose map with current Design

- 7.388E+04
- 1.820E+04
- 4.481E+03
- 1.104E+03
- 2.718E+02
- 6.694E+01
- 1.649E+01
- 4.060E+00
- 1.000E+00

ACTIVATION OF THE HEAVY SHUTTER AND BUNKER INSERT

Irradiation conditions: 10 years of operation beam @2GeV 5MW

INUN 13, EDD HEAUQUALTER LUHU 27 DEPTEMBER 2017

19

Bunker insert activation after 1 day beam-off

UROPEAN PALLATION DURCE

IKON 13, ESS Headquarter Lund 27 September 2017

Bunker insert activation after 3 days beam-off

Conclusions (I)

- Test Beam Line neutronics have been performed
- Shielding could have been a challenge but the use of a relatively cheap collimator can help you a lot
- Heavy Shutter calculation done
- Bunker insert activation does not seem an issue

Conclusions (II)

Even the "bad" radiation from the beam line can be fixed with some shielding simulation

BACK – UP SLIDES

Absorbed Dose for the chopper sealing

ROPEAN ALLATION URCE

View of the chopper

Chopper Sealing Absorbed dose Gy/s ROPEAN ALLATION JRCE **3.510**⁻⁴ **3.910**⁻⁴ **3.7(1)**0⁻⁴ 3.3-10-4 **3.1**10⁻⁴ 3.9⁻¹⁰⁻⁴ 4.340 ${}^{\circ}$ 4.2 10-4 ${}^{\circ}$ $^{\circ}$ 0 0 0 \circ 3<mark>4</mark>410-7 3.3<mark>1</mark>0⁻ ${}^{\circ}$ ${}^{\circ}$ ${\circ}$ 0 4.¹⁰⁻⁴ **4.**2 10⁻⁴ igodol0 0 3<mark>/4</mark> 10⁻⁴ 4.1<mark>1</mark>0⁻ ${}^{\circ}$ 0 4.1.10⁻⁴ 0 ${}^{\circ}$ 3.6<mark>1</mark>0⁻ O 0 4**.1**10⁻⁴ 3.4.10⁻⁴ \mathbf{O} 0 0 0 \odot • 0 4.5.10⁻⁴ 4.1-10⁻⁴ 4.<mark>0</mark>10⁻⁴ 4**_1**0⁻⁴ **3.6**10⁻⁴ 3.7<mark>1</mark>0⁻⁴