

Geant4 Monte Carlo Simulation of the Boron Coated Straw Detector

Milán Klausz

Milan.Klausz@esss.se HAS Centre for Energy Research European Spallation Source ESS ERIC BUTE Institute of Nuclear Techniques

IKON13, Lund, 26-29 September 2017

Boron Coated Straw Detector

- Proportional Technologies, Inc.
 <u>http://www.proportionaltech.com/</u>
- Aluminium tube (d=25.4 mm, t=0.88 mm)
- 7 copper straw tubes (d=7.5 mm, t=25 μ m)
- ${}^{10}B_4C$ layer (1 μ m)
- Ar/CO_2 gas mixture (0.7 atm)
- Resistive wire
- 1-3 m length
- Readout at both end of the straws

BCS layout and model

EUROPEAN SPALLATION SOURCE

- Optimal layout for parallel and small angle beam to increase path length in ${}^{10}B_4C$

Optimal configuration: each panel offset 0.4" from panel in front of it

2-4 Angstrom Detection efficiency

EUROPEAN SPALLATION SOURCE

4

5020

4980

5000

5040

z [mm]

5060 5080 5100

EUROPEAN SPALLATION SOURCE

0.00

EUROPEAN SPALLATION SOURCE

4

EUROPEAN SPALLATION SOURCE

4

2-4 Angstrom Detection efficiency 4-7 Angstrom Detection efficiency 10.0 10.0 0.200 0.14 0.175 20% straw 14% Straw 7.5 7.5 0.12 0.150 efficiency 5.0 efficiency 5.0 0.10 2.5 2.5 0.125 y [cm] y [cm] 0.08 0.0 0.0 0.100 0.06 -2.5 -2.5 0.075 -5.0 0.04 -5.00.050 -7.5 -7.5 0.02 0.025 -10.0-10.00.00 0.000 4980 5000 5020 5040 5060 5080 5100 5000 5020 5040 5060 5080 5100 4980 z [mm] z [mm] 7-10 Angstrom Detection efficiency 10-12 Angstrom Detection efficiency 10.0 10.0 0.6 0.30 26% straw 7.5 7.5 0.5 0.25 efficiency 5.0 5.0 0.4 0.20 2.5 2.5 y [cm] y [cm] 0.0 0.0 0.15 0.3 -2.5 -2.5 0.10 0.2 -5.0 -5.0-7.5 0.05 -7.5 0.1 -10.0-10.00.00 4 0.0 5060 5080 5100 4980 5000 5020 5040 5040 5060 5080 5100 5020 4980 5000 z [mm] z [mm]

2-4 Angstrom Detection efficiency 4-7 Angstrom Detection efficiency 10.0 10.0 0.200 0.14 0.175 20% straw 14% Straw 7.5 7.5 0.12 0.150 efficiency 5.0 efficiency 5.0 0.10 2.5 2.5 0.125 y [cm] y [cm] 0.08 0.0 0.0 0.100 0.06 -2.5 -2.5 0.075 -5.0 0.04 -5.00.050 -7.5 -7.5 0.02 0.025 -10.0-10.00.00 0.000 4980 5000 5020 5040 5060 5080 5100 5020 5040 5060 5080 5100 4980 5000 z [mm] z [mm] 7-10 Angstrom Detection efficiency 10-12 Angstrom Detection efficiency 10.0 10.0 0.6 0.30 26% straw 7.5 30% straw 7.5 0.5 0.25 efficiency 5.0 efficiency 5.0 0.4 0.20 2.5 2.5 y [cm] y [cm] 0.0 0.0 0.15 0.3 -2.5 -2.5 0.10 0.2 -5.0 -5.0 -7.5 0.05 -7.5 0.1 -10.0-10.00.00 4 0.0 5000 5020 5060 5080 5100 4980 5040 5060 5080 5100 5020 5040 4980 5000 z [mm] z [mm]

z [mm]

2-4 Angstrom Detection efficiency 4-7 Angstrom Detection efficiency 10.0 10.0 0.200 0.14 0.175 20% straw 14% Straw 7.5 7.5 0.12 0.150 efficiency 5.0 efficiency 5.0 0.10 2.5 2.5 0.125 y [cm] y [cm] 0.08 0.0 0.0 0.100 0.06 -2.5 -2.5 0.075 32% Global_{5.0} 0.04 -5.00.050 efficiency _7.5 -7.5 0.02 0.025 -10.0-10.00.00 0.000 5000 5020 5040 5060 5080 5100 4980 5020 5040 5060 5080 5100 4980 5000 z [mm] z [mm] 7-10 Angstrom Detection efficiency 10-12 Angstrom Detection efficiency 10.0 10.0 0.6 0.30 26% straw 7.5 30% straw 7.5 0.5 0.25 efficiency 5.0 efficiency 5.0 0.4 0.20 2.5 2.5 y [cm] y [cm] 0.0 0.0 0.15 0.3 -2.5 -2.5 0.10 0.2 -5.0 -5.0 -7.5 0.05 -7.5 0.1 -10.0-10.00.00 4 0.0 5000 4980 5020 5040 5060 5080 5100 5100 5020 5040 5060 5080 4980 5000 z [mm]

Panel λ	1	2	3	4	5
2Å	0.3348	0.2578	0.1833	0.1307	0.0933
7Å	0.5951	0.2671	0.0916	0.0337	0.0126
12Å	0.7354	0.2176	0.0384	0.0071	0.0015

Panel λ	1	2	3	4	5
2Å		0.0933			
7Å	0.5951	0.2671	0.0916	0.0337	0.0126
12Å	0.7354	0.2176	0.0384	0.0071	0.0015

Panel λ	1	2	3	4	5
2Å		0.0933			
7Å		0.9537	0.0337	0.0126	
12Å	0.7354	0.2176	0.0384	0.0071	0.0015

Panel λ	1	2	3	4	5
2Å		0.0933			
7Å	0.9537			0.0337	0.0126
12Å	0.9	530	0.0384	0.0071	0.0015

Effects of detector materials

- Scattering effects are under study
- Preliminary results with reduced detector materials
 - 9.4% more detected neutrons without aluminium and copper

mta

- 1.8% more detected neutrons without aluminium
- 7.3% more detected neutrons without copper
- 8 times more aluminium than copper in the detector
- 8 times longer average aluminium path than copper path

LoKI detector system

- BCS is a backup design for the LoKI
- McStas simulation:
 - 14 Hz
 - Short collimation
 - Diblock copolymer sample
- Geant4 simulation:
 - 5 m sample-detector distance

Neutron spectrum in panels

EUROPEAN

SPALLATION SOURCE

Panel λ	1	2	3	4	5
2Å		0.0933			
7Å		0.9537	0.0337	0.0126	
12Å	0.9530		0.0384	0.0071	0.0015
LoKI	0.4993	0.2677	0.1358	0.0625	0.0347

Panel λ	1	2	3	4	5
2Å		0.0933			
7Å		0.9537			0.0126
12Å	0.9	530	0.0384	0.0071	0.0015
LoKI		0.9028			0.0347

Time of Flight spectrum

EUROPEAN SPALLATION SOURCE

11

Time of Flight spectrum

EUROPEAN SPALLATION SOURCE

11

Detection rate

EUROPEAN SPALLATION SOURCE

Peak detection rate [kHz]

Detection rate

EUROPEAN SPALLATION SOURCE

Peak detection rate [kHz]

- The rate capability will be challenging
- Efficiency is a convolution of several parameters:
 - Energy and incident angle of the neutrons
 - Rotation of the tubes
 - Number and rotation of panels
 - Thickness of the detector components
- Detailed quantification of scattering effects is in progress

EUROPEAN SPALLATION SOURCE

Thank you for your attention!