

Beam Monitors

Fatima Issa Detector Group

www.europeanspallationsource.se 27 September 2017

Outline

- Why Beam monitors?
- Types and specifications of the used Beam monitors
- Results:

♦ Efficiency, attenuation, scattering, Position resolution
 ♦ Gamma sensitivity

- Mechanical integration (BM on chopper)
- Parasitic methods (monitoring using gamma detector)
- BM requirement survey
- Outlook

ESS instruments

EUROPEAN SPALLATION SOURCE

Many advancements in the instrument performance

longer neutron guides, complex neutron optics and complex chopper systems

ESS instruments

EUROPEAN SPALLATION SOURCE

At ESS: longer neutron guides, complex neutron optics and complex chopper systems

Figure 10: The BW chopper positioned after the bunker shielding. Shielding around choppers is not shown.

For commissioning, diagnostics, normalization → Beam monitors are required

ESS instruments

EUROPEAN SPALLATION SOURCE

Pulse duration and neutron flux vary along the beam line

The requirements for the monitors vary greatly with respect to their location and purpose → Beam monitors with different specifications are needed

A Little detailed analysis about BM performance is available

chopper

EUROPEAN SPALLATION SOURCE

 \rightarrow

Beam Monitor

Beam monitor

Beam Monitor

Beam monitor with low attenuation and high transmission factor

EUROPEAN SPALLATION

SOURCE

Beam Monitor

Nuclear reactions used for thermal neutron detection

Reaction	lsotope abundance (%)	Cross section (barn) at 1.8 Å	Q-value (MeV)
³ He(n,p) ³ H	0.014	5330	0.76
¹⁰ B(n,α) ⁷ Li	19.9	3838	2.31 (94%) 2.79 (6%)
⁶ Li(n,α) ³ H	7.6	947	4.78
¹⁴ N(n,p) ¹⁴ C	99.63	1.91	0.62
²³⁵ U(n,3n)ff	0.72	680.9	≈200

Beam monitors are thermal neutron detectors with relatively low efficiency which can vary from 10⁻⁶ to 10⁻¹ depending on the instrument requirements

Types of Beam Monitor

Multi-wire proportional chamber (MWPC)

MWPC can be filled with either 3 He or 14 N gas

From Mirrotron

From ORDELA

Monitor Manufactu rer	MWPC ORDELA	MWPC ORDELA	MWPC Mirrotron	2D-MWPC Mirrotron
Active element	³ He	¹⁴ N	³ He	³ He
Partial pressure mbar	6.07	81.06	6.5	0.4
Filled gas	³ He+ ⁴ H +CF ₄	¹⁴ N+CF ₄	³ He+CF ₄	³ He+CF ₄
Bias voltage (V)	850	850	1300	Anode:-35 00 Drift: 1500
Active area (mm)	114x51	114x51	100x50	100x50
Window thickness (mm)	2	2	1	1

Types of Beam Monitor

EUROPEAN SPALLATION SOURCE

Fission Chamber

Monitor Manufacturer	Scintillator QD	Fission chamber LND
Active element	⁶ Li	²³⁵ U
Total pressure mbar		1013.2
Filled gas		P10
Bias voltage (V)	650	300
Active area (mm)	28x42	100x100
Window thickness (mm)	0.1	1

Types of Beam Monitor

EUROPEAN SPALLATION SOURCE

Multi-wire proportional chamber (2D-MWPC)

Gas Electron Multiplier (2D-GEM)

From CDT

Monitor Manufacturer	2D-MWPC Mirrotron	2D-GEM CDT
Active element	³ He	¹⁰ B
Total pressure bar	1.65	1
Filled gas	³ He+CF ₄	Ar+CO ₂
Bias voltage (V)	Anode:-3500 Drift: 1500	-1000
Active area (mm)	100x50	100x100
Window thickness (mm)	1	0.1

 $0.8\ \mu m$ boron layer was selected for the sake of the measurement. Thinner layer will be selected for full implementation.

Beam Monitors-Gamma sensitivity measurement

Gamma sensitivity studied with three gamma sources with low, medium, and high energy

LUND

Beam Monitors-Gamma sensitivity measurement

neutron source

Gamma sensitivity depends on the set threshold. The fission chamber showed the lowest gamma sensitivity

500

1000

Threshold level

1500

14

2000

Beam Monitors at BNC

The test experiments have been performed at the Biological Irradiation Channel (BIO) at the Budapest Research Reactor (BRR) belonging to the Budapest Neutron Centre (BNC).

thermal flux 3.4×10^4 n/cm².s \rightarrow PHS with two peaks

thermal flux $4.1 \times 10^5 \text{ n/cm}^2$.s \rightarrow saturation

Saturation in most monitors (ORDELA_He, ORDELA_N, Mirrotron, fission chamber, LiG scintillator) probably due to the used electronics \rightarrow off the shelf electronics not best choice

Beam Monitors- Neutron measurement at R2D2

<u>Peak</u>	wavelength (Å)	
400	2.00	
911	0.878	
711	1.12	
511	1.54	
822	0.943	
311	2.41	
933	0.804	

Beam Monitors- Neutron measurement

Beam monitors-main results

	MWPC	MWPC	MWPC BM-100X50	2D-MWPC	2D-GEM	Scintillator	Fission chamber
supplier	ORDELA	ORDELA	Mirrotron	Mirrotron	CDT	Quantum detector	LND
Isotope used for neutron capture	³ He	¹⁴ N	³ He	³ He	¹⁰ B	⁶ Li	²³⁵ U
Gas pressure mbar	Partial pressure 6,0795	Partial pressure 81,06	Partial pressure 6,5	Partial pressure 0.4	Total pressure 100		Total pressure 1013,2
Filled gas	³ He+ ⁴ He +CF ₄	$N+CF_4$	³ He+CF ₄	³ He+CF ₄	Ar/CO ₂		P10
Active Area (mm²)	114 x 51	114 x 51	100 x 50	100 x 50	Diameter 100 mm	28 x 42	Diameter 108.0 mm
Applied voltage (V)	850	850	1300	Anode at -3500V Drift at 1500V	-1000	650	300
Measured attenuation % at 2.4Å	4.5	4.4	2.5	7.3	10.6	0.4	3.8
Calculated attenuation % at 2.4Å	4.05	4.05	2.05	4.5	6.9	0.1	2.4
Measured Efficiency at 2.4Å	1.2x10 ⁻³	2x10 ⁻⁵	1.1x10 ⁻³	1.5x10 ⁻⁴	3x10 ⁻²	5x10 ⁻³	10 ⁻⁴
Supplier Efficiency at 1.8 Å	10 ⁻³	10 ⁻⁵	10-3	1.5x10 ⁻⁴	3x10 ⁻²	10-4	10 ⁻⁴
Scattering (%)	3.9 ± 0.4	3.8±0.4	4±0.9	9±1	10.3±0.7	0.74±0.2	3.8±0.3

Beam monitor characterization \rightarrow Customization to match specific requirements

Horizon 2020 grant agreement 676548

Given the diversity of the neutron instruments a va-

riety of neutron beam monitors will be required. Multi-

wire proportional counters (MWPC) have been used in

many facilities as neutron beam monitors for instru-

ments with moderate flux and low count rate require-ment. They can be filled with either ³He at low pressure

or nitrogen as the sensing gas. For cases where a high-

count rate is needed, such as for profiling on pulse-by-

pulse basis, monitors based on gas electron multipliers (GEM) are more appropriate. Both types of monitors

can be equipped with position sensitive readout in either

1 or 2 dimensions. Scintillation monitors are also an op-

it is crucial that the selected neutron beam monitor

tion for low count rate situations. Fission chambers have an advantage of a very high neutron signal and therefore

fulfills the instrument requirement [8–11]. For instance a beam monitor tested at NOP beamline in J-PARC

showed a variation in the neutron detection efficiency

which exceeds the tolerable level for high precision mea-

surement of the neutron lifetime [12]. Different types of

beam monitor will be used at ESS, some will be realized

by ESS in kind partners [13-15] others will be manufac-

tured by different suppliers. The aim of this work is to characterize seven neutron beam monitors, manufactured

by several companies, and to compare their properties to

II. DETECTION TECHNIQUES

Gas proportional counters have dominated the world

of thermal neutron detection because of their robust de-

sign, high detection efficiency and low cost compared to solid-state detectors. Their operation is based on the ab-

sorption of thermal neutrons in the detector-converting

medium. Lacking charge, thermal neutrons cannot in-

teract with matter through Coulomb interaction, which

be categorized for various applications.

a very strong ~-ray rejection.

Characterization of Thermal Neutron Beam Monitors

F. Issa,^{*} A. Khaplanov, and R. Hall-Wilton[†] Spallation Source ESS ERIC, P.O Box 176, SE-221 00 Lund, Sweden

I. Llamas, M. Dalseth Riktor, and S. R. Brattheim Institute for Energy Technology, P.O. Box 40 Kjeller, Norway

H. Perrey Lund University, P.O Box 118, SE-221 00 Lund, Sweden and European Spallation Source ESS ERIC, P.O Box 176, SE-221 00 Lund, Sweden (Dated: August 9, 2017)

Neutron beam monitors with a wide range of efficiencies, low gamma sensitivity and high time and space resolution are required in neutron beam experiments to continuously diagnose the delivered beam. In this work, commercially available neutron beam monitors have been characterized using a Be-based neutron source. For the gamma sensitivity easurements different gamma sources have been used. The evaluation of the monitors includes, the study of their efficiency, attenuation, scattering and sensitivity to gamma. In this work we report the results of this characterization.

I INTRODUCTION

Neutron scattering is used in modern science to understand material properties on the atomic scale. It has led to advances in many areas of science, from clean energy to nanotechnology, materials engineering and fundamental physics. High-intensity beams of neutrons are needed to perform neutron scattering science. These neutron beams can be produced either by fission in a nuclear re actor, similar to that at the Institut Laue-Langevin (ILL) r by spallation sources such as at ISIS [2], SNS [3] and J-PARC [4]. The European Spallation Source (ESS) [5, 6] which is under construction in Sweden, will be the world's leading neutron source for the studies of mate-rials. A unique feature of the ESS neutron production will be the long proton accelerator pulse (2.86 ms) with a repetition rate of 14 Hz [7].

At a neutron spallation source, the neutron intensity fluctuates with time depending on the characteristics of the proton beam to the neutron target and moderator performance. This requires a continuous neutron beam monitoring with high precision to ensure the correct operation of the neuron instruments. More specifically a continuous monitoring of neutrons in the sub-pulse structure is required for instruments with time-of-flight design. Neutron beam monitors are detectors with sufficiently

low efficiency $(10^{-6} - 10^{-1})$ so that a low percentage of the incoming beam is absorbed or scattered. They are used to ensure that the neutron flux, beam distribution, and pulse timing correspond to those expected from the design of the instrument. In addition, they are used to determine the neutron flux at the sample in order to correctly interpret the scattering data.

fatima.issa@esss.se
 † Also at Mid-Sweden University, SE-851 70 Sundsvall, Sweden

is the dominant mechanism through which charged particles lose their energy. Therefore mechanisms for de-tecting thermal neutrons are based on indirect methods where neutrons interact with specific atomic nuclei to produce energetic ions. The most commonly used neutron interactions for thermal neutron detection are summarized in Table I.

Reaction	Isotope abundance (%)	Cross section (barn) at 1.8 Å	Q-value (MeV)
³ He(n,p) ³ H	0.014	5330	0.76
${}^{10}B(n,\alpha)^7$ Li	19.9	3838	2.31(94%) 2.79(6%)
${}^{6}Li(n,\alpha)^{3}H$	7.6	947	4.78
14N(n.p)14C	99.63	1.91	0.62
235U(n.3n)ff	0.72	680.9	≈200

The beam monitors under study are shown in figure 1. Their specifications are summarized in Table II. These monitors can be categorized depending on their design and the electronics they are equipped with, into two main categories: position sensitive and non-position sensitive The multi-wire proportional chambers (2D-MWPC) from Mirrotron [16] and the gas electron multiplier (2D-GEM) [17, 18] from CDT [19] are position sensitive beam monitors, while other beam monitors are area-integrating, i.e. flux monitors

All monitors studied here detect discrete neutron events, rather than an integral charge proportional to flux and all are sealed except the 2D-GEM monitor from CDT. This monitor should be filled with a gas mixture of Ar/CO2 with a flow rate of 5-10 sccm. To determine the exact position of the neutron incidence, the detector includes position sensitive readout electrodes

A. Multi-wire proportional chambers

The monitors from Mirrotron and ORDELA are multiwire proportional chambers (MWPC) with low detection efficiency. Their entrance windows are thin aluminum membranes (around 1 mm thick) to minimise neutron at tenuation. The two ORDELA models [20] are filled with ³He+⁴He+CF₄ and with ¹⁴N+CF₄ respectively, while the Mirrotron models are filled with ³He+CF₄. The CF₄ gas is added as a stopping and quenching gas to limit the proton and triton ranges [21]. The 2D-MWPC from Mirrotron is a position sensitive

The D^{-s} with P delay line readout. It is a chamber filled with a converter gas (${}^{3}\text{He+CF}_{4}$) for thermal neutron detection and consists of one anode frame and two cath-ode frames wired with gold-plated tungsten wire (1000 pixels). When a neutron is captured in the converter gas, electron-ion pairs are created. Then the electrons are accelerated toward the wire electrodes by the applied

electric field. It is possible to determine the position of interaction by the integrated electronics. For this monitor the position encoding is based on delay lines [22]. The set of cathode wires is connected to a delay line read-out system. The delay time differences are measured for each set of cathodes with time-to-digital converters and these digital signals give an XY position encoded output. Be side the XY signals there is a summed anode signal which is used to obtain the pulse height spectra (PHS).

B. Gas Electron Multiplier

It is also possible to use a solid neutron converter with a gas readout. For the GEM-based beam monitor from \overrightarrow{CDT} a 0.8 μ m thick boron layer is used as a neutron con-verter layer. The thickness of the boron layer is chosen here for measurement purpose. However, a thinner laver will be selected for a full implementation. This layer is coated on the drift electrode. The charged products created (α and triton) deposit their energy in the counting gas creating e-ion pairs along their track. The electrons then drift toward the GEM multiplier foil that is made of 50 μ m of Kapton substrate sandwiched between $5 \,\mu m$ thick copper claddings on either side. The detector supplied with its readout system. Each electrode of the readout structure is connected to one channel of a highly integrated ASIC, which contains for each channel a charge sensitive pre-amplifier, shaper and discrimina-

C. Scintillator

Thermal neutron scintillation detectors often use lithium as the neutron converter. The principle of detection relies on the emission of light photons due to the interaction of radiation with the scintillation material [23] Usually a photomultiplier is used to convert the light our put of a scintillation pulse into a corresponding electrical signal. A scintillator detector from Quantum Detectors UK [24], consisting of a 2-dimensional array of neutron sensitive scintillator beads (35 beads each is 0.25 mm³) made of lithium silicate glass has been used in this work The active area is 28x42 mm²

D. Fission chamber

Neutron-induced fission reactions can also be used for thermal neutron detection. In this case, extremely low background rates can be achieved thanks to the large Q value (≈ 200 MeV) of the reaction. The most popular form of a fission detector is an ionization chamber coated with a layer of a fissile deposit such as ²³⁵U. Generally the fissionable materials used in a fission chamber are α emitters. Consequently, fission chambers have undesired

Manuscript accepted for publication in Physical **Review Accelerators** and Beams.

Outline

- Why Beam monitors?
- Types and specifications of the used Beam monitors
- Results:
 - ♦ Efficiency, attenuation, scattering, Position resolution
 - ♦Gamma sensitivity
 - ♦Fast neutron sensitivity
- Mechanical integration (BM on chopper)
- Parasitic methods (monitoring using gamma detector)
- BM requirement survey
- Outlook

Mechanical integration

EUROPEAN SPALLATION SOURCE

The chopper can run up to 22 Hz

BM at the backside of the chopper @Embla

Mechanical integration

EUROPEAN SPALLATION SOURCE

The BM should be electrically isolated from the chopper. Grounding is important follow grounding guidelines

Mechanical integration

Outline

- Why Beam monitors?
- Types and specifications of the used Beam monitors
- Results:

♦ Efficiency, attenuation, scattering, Position resolution

♦Gamma sensitivity

 \diamond Fast neutron sensitivity

- Mechanical integration (BM on chopper)
- Parasitic methods (monitoring using gamma detector)
- BM requirement survey
- Outlook

Beam monitor for chopper diagnostics

Fibre beam monitors \rightarrow Used at LET

Info from Niko and Nigel Thanks!

Aluminum tube is about 3 mm in diameter.

Small rods of GS glass scintillator, each about 10 mm in length and 0.5 mm in diameter

Parasitic methods for monitoring the beam

Using Gamma detector

Using the boron layer on the chopper disc \rightarrow information about the chopper rotation \rightarrow this is done using a gamma detector outside the beam.

63ma deecor MN ^{Incident} beam

 $\label{eq:B} \begin{array}{ll} {}^{10}{\rm B} + {\rm n} \rightarrow {}^{7}{\rm Li} + {}^{4}{\rm He}({\rm Q} = 2.72 {\rm MeV}) & 6 \ \% \\ {}^{10}{\rm B} + {\rm n} \rightarrow {}^{7}{\rm Li}^{*} + {}^{4}{\rm He}({\rm Q} = 2.31 {\rm MeV}) & 94 \ \% \end{array}$

Parasitic methods for monitoring the beam

LaBr scintillator detector from Saint-Gobain is surrounded by a mirrobor 2mm (80% B4C)

Parasitic methods for monitoring the beam

A gamma peak at 480 keV can be recognized in the presence of boron

The gamma peak at 480 keV can be recognized in the presence of different gamma sources

More measurements should be performed on a real beam line with time stamped electronics

Outline

- Why Beam monitors?
- Types and specifications of the used Beam monitors
- Results:

♦ Efficiency, attenuation, scattering, Position resolution

♦Gamma sensitivity

 \diamond Fast neutron sensitivity

- Mechanical integration (BM on chopper)
- Parasitic methods (monitoring using gamma detector)
- BM requirement survey
- Outlook

Beam monitor system Integration

Beam monitor system Integration

EUROPEAN SPALLATION SOURCE

Beam monitor electronics

EUROPEAN

SPALLATION

SOURCE

ンジ

Beam monitor require ents

EUROPEAN SPALLATION SOURCE

Instruments	Number of BM	Time resolution (µs)	Position resol		ym x mm	Flux (n/cm².s)	Pulse duration (ms)	Vacuum/air
LKOI	2 or 3 for normalization	100	rent			NM	53 to 63	vacuum
	2 for diagnostics	100	instrum			NM		vacuum
FREIA	2 for normalization	Same for eac	nt		15? sterial	NM		air
	One behind each chopper pair for	offication	ment? ent?	ne and mate	ering, ma	Y		vacuum
MIRACLES	1 for normalization	M) spectration:	n requirer, inequirer, uideus?	size shall le.g. scc		ux on sample 5x10 ⁶		vacuum
	2 for dia	r normalite resolution	olution or Inter, get on the	hux? monito	ou have?			vacuum
VESPA	1 for not Bean BN	tow many etimositio in v	ad on a limitati Neutring	un hope	ars You	rial	TBD	Vacuum (preferable)
	3 or4 for diagn	What is be be me se	there teacherns attenut	W Many C.	and materia.	later.	TBD	Vacuum (preferable)
HEIMDAL	1or 2 for normalizatio	Ninetance area? se	ur main saturation	er then ho mentionent	eiter shape ar gle.g. scatter			air
	2 for diagnostics	° Beau at a reso What a reso o area, reso	Diagnostics: chorus	solution guide the	ux? monitor:	μ _j .		vacuum
CSPEC	1 for normalization	BM	ror any? the post?	on Chimite Negarding	mple: ther the st	for 10 ° to be 10° - m/s/b/cm²		vacuum
	4 for diagnostics	10. 11	What is an or nouther	nat concerns	ne sa op or t	oneach		vacuum
T-REX	1 for normalization	1 μs ο	· Where to rea? section	hain curatic or after	am - putpose?	int? me pulse s	adin	vacuum
	2 for diagnostics	2 μs	· Beam are solutio	an ston at ane	ts? for what environ	son of his are need	nen	air
BEER	1 for normalization	10 µs	o area t the	a need to require	ora and sample	uratis istics a	ad? WIT	air
	1 for diagnostics	10 µs	BM BE THEFE	area? specific erai utron	come to the that is the	ne of state on is need		Vacuum
BIFROST	2 for normalization	100 us	The Acter	the on can a neurater	andve	what ment? M design	Btw 0.1 and 3 ms	air
	2 for diagnostics	none	none	Neutron net inter	shape and and	asuren hout Br	Btw 0.1 and 3 ms	air
NMX	None for normalization	non	Non 📌 o	HOW CO HEP	ux at es uremente m	cision al		
	3 for diagnostics	<1ms	1-2 mm	· How is the P	the measured on the	der		air
ESTIA	0-1 for normalization	1 µs	Not evaluated	V. me	ang is the at BM: wheed?	<10 ¹⁰ n/s	Sufficient statistics needed 10 ⁴ cts/bin	vacuum
	4 for diagnostics	1 ms	< 1mm	T. each	cale fort is t	10 ¹⁰ to 10 ¹² n/s	No specific statistics needed	vacuum
ODIN	1 for normalization	100	Maybe 1 mm	N VI. T	Imesuren	10 ¹¹	60 to 120 ms	
	2 for diagnostics	100	Maybe 1 mm	Max 10 WIL	10x10	6x10 ¹⁰ to 3 x10 ¹⁰	20 to 40 and 35 to 70	2.4

Beam monitor requirements

- <u>Time resolution</u>: 1 μs to 1ms
- Position resolution: 0.2mmx 0.2mm up to 3 mm
- Flux on each monitor: 10⁷ n/s/cm² up to 10¹² n/s/cm²
- Beam size: 2x 15 mm up to 111x120 mm
- Active area: 15x 30 mm up to 120x120 mm
- Instruments with no Position sensitive BM: LOKI-FREIA-VESPA-BEER-BIFROST
- Majority of BM are in vacuum: LOKI-MIRACLES- VISPA- CSPEC-ESTIA-ODIN
- Main concern: attenuation, scattering, enough statistics per measurement

Preliminary

Beam monitor requirements

EUROPEAN SPALLATION SOURCE

Beam monitor per zone

Neutron Flux at various locations

10⁷- 10¹⁰ n/cm².s

EUROPEAN SPALLATION SOURCE

Beam monitor per zone

Instrument	Bunker	Guideline	Sample	Camera	Transmission	
LOKI	0	2	2	1	2	
C-SPEC	1-2	2	1	1	1	
T-REX	0?	2?	1	0	0	
NMX	0	2	1	1	0	Preliminary based
BEER	1	0	1	1	0	On BM requirement
HEIMDAL	1	1	1-2	0	0	document
ODIN	2	0	1	0	0	and TG2
ESTIA	2?	1?	0?	1	0	documents
FRIA	?	?	1-2	0	0	
BIFROST	1	1	1-2	1	1	
MIRACLES	0	1	1	1	1	
VESPA	2	1	1	0	1	

Beam monitor Guidelines

Accessibility/reliability	Radiation hardness materials
Mounting	If along the chopper or the guide \rightarrow electrically isolated
Movement	Not preferable option Mounting and positional reliability should be considered and cable rotation has to be reviewed Continuity of diagnostics?
Gas	Probably BM as sealed system
Failure/maintenance	Whenever possible parasitic maintenance $ ightarrow$ component should be reviewed and qualified for reliability and availability
Electronics	BM will have same backend electronics for maintenance and integration reasons
Racks	Racks maybe separated from detector rack maybe per grounding zone
Data	Event mode expected as default mode
Fission chambers	Preliminary recommendation →only in or around the bunker region not close to the sample because of fast neutron emission. Before losing line of sight to moderator and out of line of sight to sample. (main disadvantage of the fission chamber is that in addition to the desired fission products three fast MeV neutrons on average and MeV gamma radiation are produced during thermal fission) (flux of 10 ¹⁰ n/s → emission of 10 ⁵ n/s fast neutrons)(assuming fission chamber efficiency 10 ⁻⁵)

- Different types of beam monitors (MWPC, 2D-GEM, scintillator, fission chamber) from different supplier have been tested
- Efficiency, attenuation and gamma sensitivity were studied
- Relatively high attenuation factor \rightarrow mainly contributed to the window thickness
- Mechanical integration \rightarrow No electrical contact between BM and choppers
- Low attenuation factor \rightarrow Parasitic methods could be used
- Saturation with the current electronics \rightarrow re-test with proper electronics
- For facility maintenance → min 3 BM per instrument (Diagnostics, normalization, transmission)
- Next steps \rightarrow new beam monitors, electronics, full integration

THANK YOU