

Remote Handling

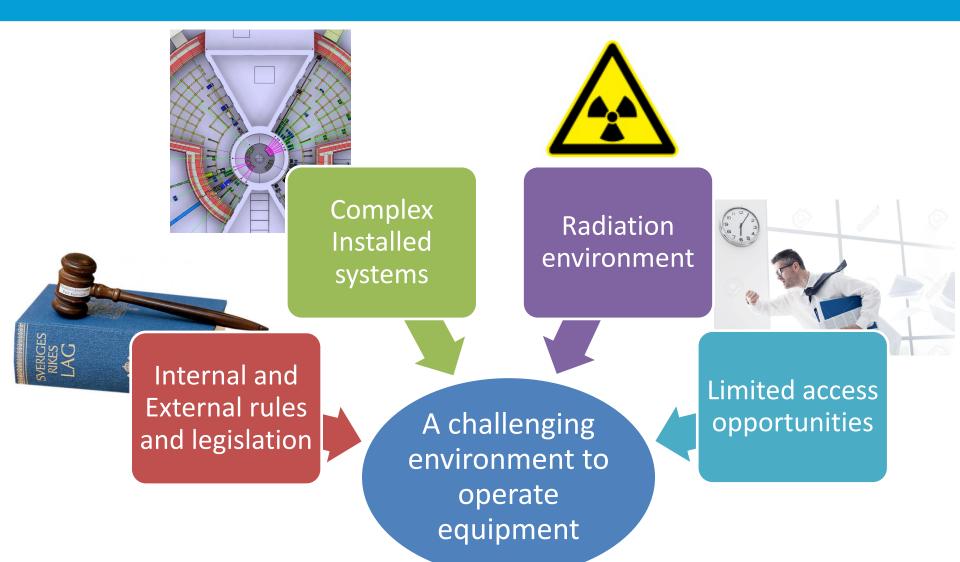
Strategy and implementation

Erik Nilsson Mechanical Engineer ESS Chopper Group

www.europeanspallationsource.se 27 September, 2017

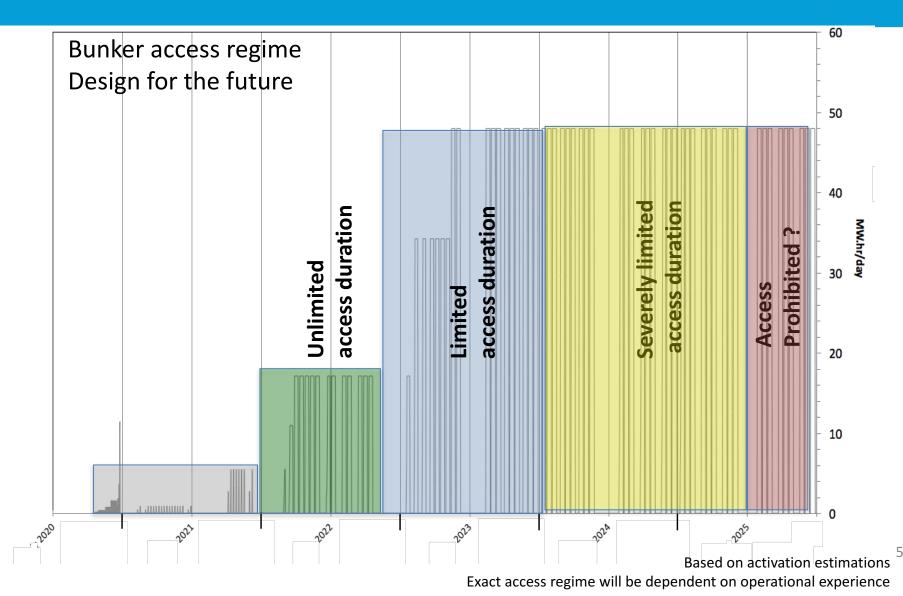
Overview

- Why do we need RH at ESS
- How are we going to implement RH
- Implementation examples on instruments
- Future



Remote Handling Justification

ESS unique source, with unique boundary conditions.



Component activation a long term issue ...

Activity during shutdown - rear of bunker

		Whole body d	ose @ about	20 cm [uSv	/b]		1				
Delay following beam shutdown	Material	1h	1 day	3 days	7 days	1 year					
	Aluminium (5083)	200	<3	< 0.5	<0.5	<0.5				West sector	
Guide downstream	Aluminium ?	<25	<3	< 0.5	<0.5	<0.5					
Collimator (streaming)	Copper	<50	<25	<3	3	<3					
Chopper (no steel)	Aluminium housing / Alu roto	r 300	<50	<3	<0.5	<0.5					
Heavy shutter	Tungsten / no housing	1000	100	<50	<25	<25					
T ₀ chopper (Tungsten hammer)	Tungsten / steel housing	1000	100	<50	<25	<25		M * 7/8			
Inside rear bunker wall (with lead)	Lead /PolyConcrete/ Steel	<3	<3	<3	<3	<0.5					
Note all calculations assum Exposition prior to shutdov Number of so Source 'densi Exposure	vn is assumed to be 1 purces (>0.5) ty	Dose >3 <25 mic UNRESTRICTED CON WORK AREA (BLUE ZON)					CONT REA	NTROLLED A			
LAPOSULE	uomin	агей ру	ann	JIEIII					0.01		
Access prerequisites Gamma shutters Remove or shield botspots							Gamma source distribution 72hrs after shutdown (@30cm)				

Remove or shield hotspots

Activity during shutdown - front of bunker

EUROPEAN SPALLATION SOURCE

West and north sector

	Contact dose [µSv/h]						
Delay following beam shutdown	Material	1h	1 day	3 days	7 days	1 yea	
Guide upstream of the 1st chopper	Aluminium (5083)	1000	50	<3	<3	<3	
Guide downstream	Aluminium ?	40	<3	<3	<0.5	< 0.5	
Collimator (streaming)	Copper	1000	200	<25	<25	<25	
Chopper (no steel)	Aluminium housing / Alu rotor		200	<25	<3	<3	
Heavy shutter	Tungsten / no housing		1000	500	<100	<100	
T ₀ chopper (Tungsten hammer)	Tungsten / steel housing		1000	500	<100	<100	
Inside rear bunker wall (with lead)	Lead /PolyConcrete/ Steel	3	3	<3	<3	<0.5	

Note all calculations assume idealized configues Exposition prior to shutdown is assumed to be

Dose >25microSv/h RESTRICTED CONTROLLED WORK AREA (YELLOW ZONE)

Number of sources (>0. Source 'density'

>> per mz

'contact' dose dominates

Access prerequisites Earliest access Gamma shutters

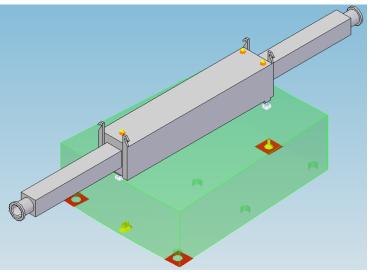
Gamma source distribution three days after shutdown (@contact)

Other facilities

- SNS (1-1.4MW)
 - Critical systems prepared for remote handling
 - Activation levels increasing (10 years of operation)
- J-PARC (~0,5MW)
 - Critical systems designed for remote handling
 - Maintenance equipment handled remotely
- **ISIS (~200KW)**
 - No RH compatibility on instrument component
 - Still manageable after 30 years
- JET (Joint European Torus)
 - Forced to retrofit RH components
 - 3-5 times longer handling time on upgraded equipment compared to original RH designs

Large (dual beamline) RH module at SNS

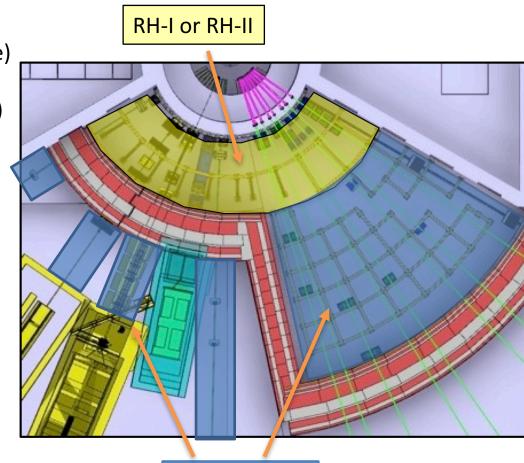
EUROPEAN SOURCE


Remote Handling Strategy – ESS-0042943

Use of modules

- Design instruments in modules.
 - Aim to reduce the number of modules along the beamline.
- Module is defined as
 - Common maintenance unit and/or
 - Common extraction unit.
- All modules shall be classified during detailed design

Classification


Classification dependent on

- Location (Yellow* or blue* zone)
- Levels of activation after 72 hours (expected time to access)
- Expected service interval
- Reliability

Three levels of classification

- Full remote handling compatibility (RH-I)
- Limited remote handling compatibility (RH-II)
- No remote handling compatibility.

RH-I or No RH

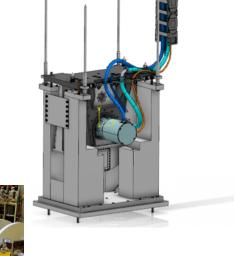
Handling strategy

- Activities restricted to
 - **Extraction (RH-I and RH-II)**
 - **Reinstallation (RH-I)**
 - Inspection and/or realignment of component/module (if required)
- Complex RH activities shall be avoided.
 - Straight vertical lifts only.
- No in-situ RH maintenance is foreseen.

Remote handling classification RH-I

Module classified as RH-I if **any** of the following three criteria apply

- Module is installed within Yellow zone* and has maintenance 1. or reliability constraints**
- 2. Module is installed in Blue Zone and has maintenance, reliability or activation constraints***.
- 3. Module has to be removed to access another RH-1 module.


Typical modules classified in RH-I:

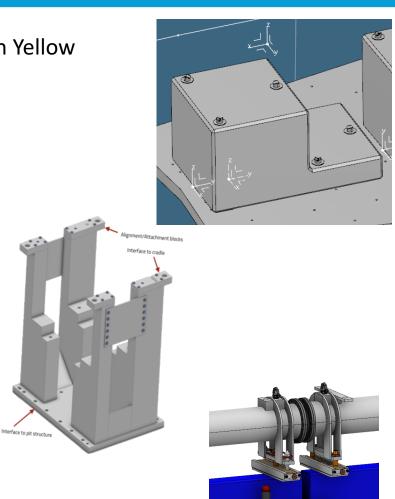
- **Chopper assemblies**
- Collimator assemblies
- Shutters
- **T0-Choppers**

*Exact demarcation TBD.

**Less then 5 years service interval or MTBF of less than 10 years

*** Less than 5 years service interval, MRBF of less than 10 years or contact dose of >25µSv/h after 72h.

EUROPEAN



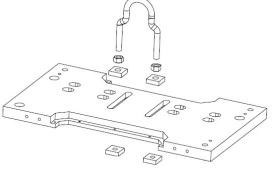
Remote handling classification *RH-II*

Modules shall be classified as RH-II if it is installed within Yellow Zone and is not classified as RH-I

Typical modules classified in RH-II:

- Base plates
- Supports and alignment mounts
- Most neutron guides
- Service infrastructure

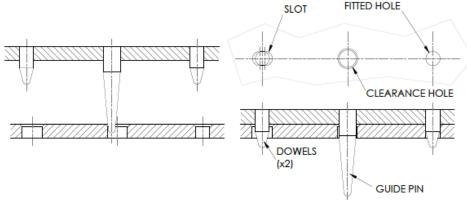
Best practices

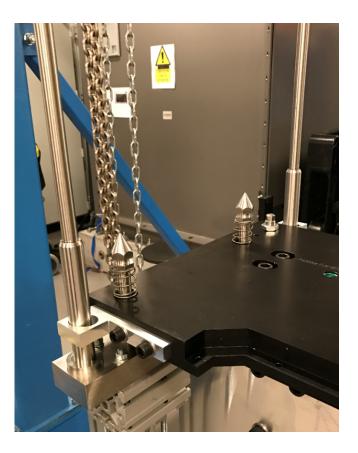

- Handling
- Alignment
- Module interfaces
- Activation and contamination
- Viewing, visibility and identification
- Failure considerations
- Standardisation

Best practices – Handling

- Vertical lift of modules, using the overhead crane and supported by self aligning features.
- Use available lifting interfaces.
 - Simple and safe engagement and disengagement.
 - Special tools, jigs, and fixtures should be avoided
 - Single point lifting in combination with guide rails/pins.
- No loose items during handling.
 - Unbolted fasteners for extraction is required to be captive.
- Avoid multiple simultaneous handling.
- Avoid damage during handling.
- Any exceptions to this shall be discussed and approved.

Single point lifting

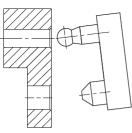

Maintenance support 16

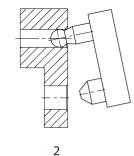


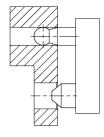
Best practices – Safe alignment of module

• Self engaging and self aligning

- Gradual alignment using guide pins or rollers
- Generous tolerances and realistic capture range.
- Guide pins should be of different lengths.
- Dowels should generally be used in pairs.
- Dowels shall be as short as possible.
- Consider what RH equipment is available and required
- Incorrect mating shall be impossible.

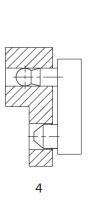


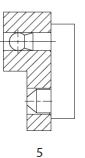




Best practices – Safe alignment of module

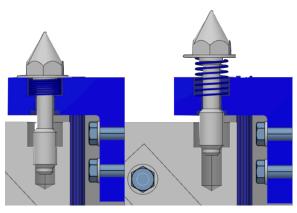
Step	DoF's	Туре
1. Module held in free space	6	3 Translation 3 Rotation
2. Module located on dowel ball- end	4	1 Translation 3 Rotation
3. Module located on single long ball-ended dowel pin	2	1 Translation 1 Rotation
4. Module item located on second short dowel pin	1	1 Translation 0 Rotation
5. Module fully in contact with mating face	0	0 Translation 0 Rotation

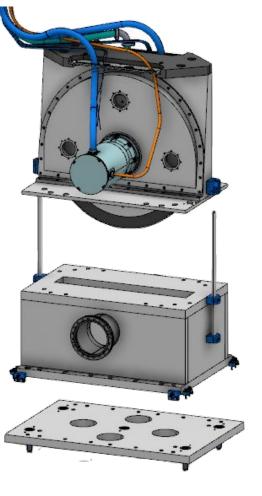




3

1

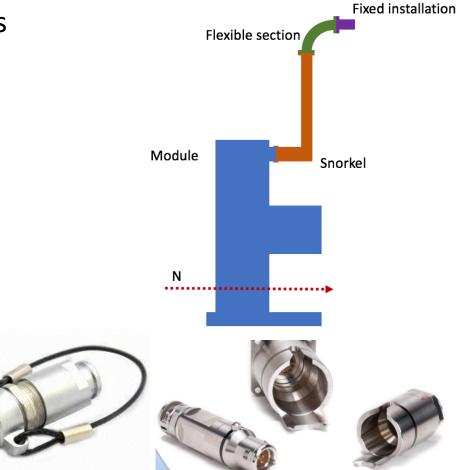



Example of gradual kinematic constraint

Best practices - Interfaces

- Modules should be independent of other modules.
- Bolted interfaces
 - Minimise number of bolts
 - Use few bolt sizes
 - Design according to standard or use standard components.
 - Captive pop-up design
- No welding interfaces between modules.
- Work on remote handling interface between vacuum sections is ongoing (together with the ESS vacuum group).

Example of captive bolts



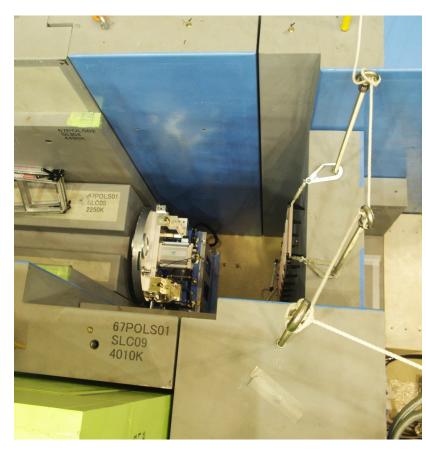
Best practices – Interfaces

Electrical and fluid interfaces

- Utilities routed in three sections
 - Self supporting snorkel
 - Flexible section
 - Fixed section
- Bundling of connectors
- Push-pull type connectors

Best practices – Activation and contamination

- Minimising the activation lowers the cooldown period
 - Beneficial for bunker access Errors can cause access to bunker to be impossible.
 - Beneficial for hands on maintenance.
 - Lowers waste cost.
- Must comply to the instruction and materials list to be released
 - Exceptions shall be approved by ESS.
 - Choose construction materials that minimise the need for decontamination.


EUROPEAN

SOURCE

Best practices – Viewing, Visibility and Identification

- High contrast or colour difference between mating modules and avoid highly reflective surfaces.
- Physical features that clearly align when correctly assembled.
- All module items, must be clearly marked and identified.
- Have means to perform inspection in service, if required.
- Incorporate suitable survey and alignment attachment points.

Best practices – Failure consideration

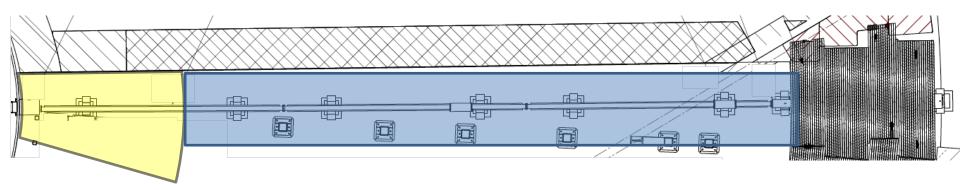
- All modules shall be assessed for the probability and modes of failure.
- Failure analysis
- RH features shall not be damaged in any failure scenario.

Best practices – Standardisation

(CSS)

- Large benefits of standardisation, over the lifetime of ESS.
- General standardization best practices:
 - Use standard design solutions, instead of new design solutions.
 - Commercial components are preferred over own designs.
 - Limit the number of different types of commercial components.
- List of standardisation areas:
 - Location and alignment devices (ESS-0111248) [Guide pins, rods wheels etc.]
 - Fasteners and mechanical load transferring components (ESS-0111249) [Screws, bolts etc.]
 - Lifting and handling features (ESS-0111250) [Lifting eyes etc.]
 - Electrical connectors (ESS-0111251)
 - Fluid couplings (ESS-0111255) [Including vacuum components for optics]
 - Construction materials use at ESS instruments
 - Seals and gaskets (ESS-0059912)
- We need your help and input!

Elasticity after irradiation



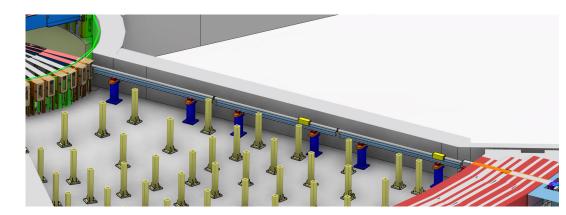
Remote Handling Example implementations

Design example – *inspired* by NMX

EUROPEAN SPALLATION SOURCE

Yellow Zone

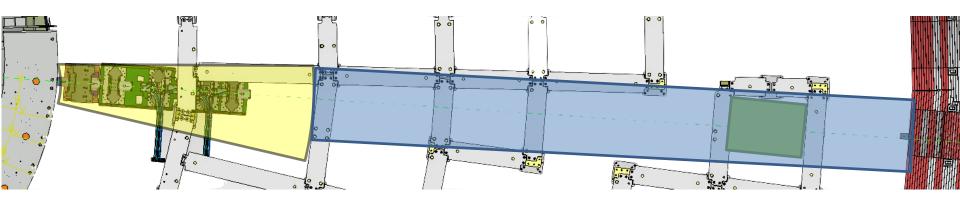
Guide sections


- One or two guide modules
- Support modules
- RH-II Classed
- Designed for RH-extraction
 - Lifting interface
 - RH-disconnection
 - Separated by windows or RH-Bellows
- Failure analysis
- Low activation materials

Images courtesy of NMX team

Blue Zone

Guide and collimator sections


- No remote handling classed modules
- No RH impact on design
- Low activation materials

Design example – *inspired* by BEER

EUROPEAN SPALLATION SOURCE

Yellow Zone Chopper modules

- Five to six chopper modules
- Translating chopper support module
- RH-I Classed
- Designed for RH extraction and reinstallation
 - Lifting interface
 - RH-disconnection
 - Guide system
 - Alignment system
- Failure analysis

Low activation materials

Guide/Support modules

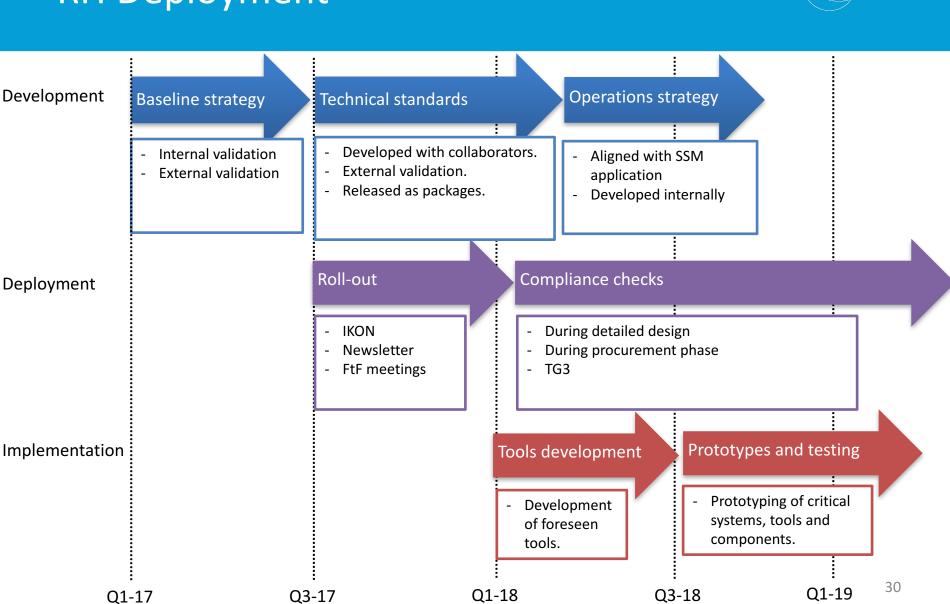
- Lower enclosure modules
- Guide modules
- Support modules
- RH-II Classed
- Designed for RH-extraction
 - Lifting interface
 - RH-disconnection
 - Separated by windows or RH-Bellows
- Failure analysis
- Low activation materials

Blue Zone Heavy shutter module

- RH-I Classed
- Designed for RH extraction and reinstallation
 - Lifting interface
 - RH-disconnection
 - Guide system
 - Alignment system
 - Failure analysis

Guide/Support modules

- No remote handling classed modules
- No RH impact on design
- Low activation materials


Remote Handling _{Future}

RH Compatibility for instruments

- The instrument are required to present the following in the TG3 documentation:
 - Module definition and classification.
 - RH consideration for handling, alignment and fastening.
 - Failure analysis of modules.
 - Case and reason when ESS best practices are not followed (if any).
 - Case and reason when ESS standard RH equipment is not used (if any).
 - Requirements on specialised tooling outside of ESS standards.
- The instruments projects shall communicate changes to TG3 scope as early as possible to allow for tools and equipment adaptation.

ELIROPEAN

RH Deployment

EUROPEAN SPALLATION

SOURCE

Thank you for your attention Questions?