

Structural biology with neutrons at the European Spallation Source

Brussels 2017-09-14

Esko Oksanen Instrument Scientist,

Macromolecular Crystallography

EUROPEAN SPALLATION SOURCE

• Neutrons in structural biology

• Structural biology at ESS

Why neutrons for biological structures?

Neutron scattering is not a technique!

 We can see light atoms → hydrogen positions

Crystallography

We can use isotope labelling to create contrast → proteinprotein complexes

Small angle scattering, reflectometry

 We can observe dynamics with inelastic scattering → relating dynamics to function Neutron spectroscopy

Neutron Macromolecular Crystallography

Oksanen, E et al. J. R. Soc. Interface **2009**, 6 Suppl 5, S599-610.

©Hydrogens are visible ©No radiation damage *⇔*Large crystals needed ⊖Data collection takes weeks Sew instruments available

Where are hydrogens important?

Why is hydrogen interesting?

EUROPEAN SPALLATION SOURCE

I. Enzyme mechanism Urate oxidase

Mono- or dianion?

Unexpected enol form (8-hydroxyxanthine)

Oksanen, E.; Blakeley, M. P.; El-Hajji, M.; Ryde, U.; Budayova-Spano, M. *PLoS ONE* (2014), *9*, e86651

Why is hydrogen interesting?

2. Ligand binding and protonation states Acetazolamide in Human Carbonic Anhydrase II

Three possible protonation states at physiological pH

Provides full picture of ligand binding

Small Angle Neutron Scattering

Solution structure
Complexes resolved by contrast variation
Requires D-labelling
Sample volumes larger than SAXS (~200 µl/measurement)

Neutron reflectometry

©Can study surfaces in solution

©Membrane composition with Å resolution

Information only along normal

©Deuterated compounds essential

Mechanism of membrane-binding antibiotics (Amphotericin B):

Human pathogen -> Membrane model for screening virulence genes/AmB resistance

Inelastic neutron scattering

- Dynamics information in time and length scales unaccessible by other techniques
- Directly comparable with MD simulations

Pieper et al. Photochem. Photobiol. 2009;85:590-597

• Neutrons in structural biology

Structural biology at ESS

The world's brightest neutron source

ESS Long Pulse

NMX – Macromolecular crystallography

NMX – conceptual view

- distance (0.2-1.0 m)
- Variable 20 angle (0-110°)

NMX Detector geometry

EUROPEAN SPALLATION SOURCE

Three 60 x 60 cm detectors with 0.2 mm spatial resolution Sample-detector distance (0.2-1.0 m) and 20 angle (0-110°) variable by robotic positioning

- Solid angle coverage can be traded for unit cell size
- Large unit cells will take longer to collect

Bovine heart cytochrome c oxidase $P2_12_12_1$ a = 182.59 Åb = 205.40 Åc = 178.25 ADetector distance I m

Helliwell, J.R. et al. J. Appl. Cryst. (1989) 22, 483-497

LoKI – Small angle scattering

A broad Q range, high flux SANS instrument for soft matter, materials and bio-science

Supporting facilities

Publication

DEMAX platform

- [•]Support for (bio, chem) deuteration and macromolecular crystallisation
- •Core mission: to deliver user support labs, access, expertise for biological deuteration and protein crystallization
- These labs aim to support users in the fields of soft matter & life science research.
- Goal: be ready to prepare samples for hot commissioning and pre-operations activities. Also be ready to ensure early scientific success on first beamlines by supplying appropriate samples.

What will be different at the ESS

Macromolecular crystallography

- Smaller crystals (~200 μm)
- Larger unit cells (< 300 Å)
- Data collection in days, not weeks

Inelastic neutron scattering

- Smaller samples (<5 mg)
- Longer length scales
- Broader dynamic range

Small-angle neutron scattering

- Smaller sample volumes (~10 μl)
- Higher throughput of samples
- Faster time resolution

Supporting facilities

- Sample preparation & characterisation laboratories
- Deuteration (biological & chemical)
- Crystal growth
- Computational support (DMSC Copenhagen)

Reflectometry

- Smaller samples (~1 cm², 10-100 μg)
- Kinetic studies faster (x10)

EUROPEAN SPALLATION SOURCE

Questions?