

Polarized neutron reflectivity for the exploration of magnetic nanostructures.

Kristiaan Temst Instituut voor Kern- en Stralingsfysica KU Leuven, Belgium

ESS Science Meeting, Brussels, September 14th 2017

Size does matter! Ex.: hard disk

Anno 1975

Anno 2017

KU LEUVEN

Progress is strongly rooted in fundamental studies of nanomagnetism, interfacial effects and dynamics!

Ion and Molecular Beam Laboratory

http://fys.kuleuven.be/iks/nvsf/experimental-facilities/experimental-facilities-home

Complementarity with LSF

Complementary approach : experiments at international large-scale facilities for neutrons, muons, photons and radioactive ions

ESRF and ILL, Grenoble

<image>

FELIX Nijmegen

ISOLDE, CERN

KU LEUVEN

MLZ (Munich), HZB (Berlin), PSI (Villigen), DESY-Petra (Hamburg), BESSY (Berlin), APS (Argonne)...

KU LEUVEN

General framework and trends

interface-driven effects in 'hybrid' magnetic structures

Confrontation of different order parameters

ferromagnet/antiferromagnet (exchange bias) strong/weak anisotropy (exchange spring) ferroelectric/ferromagnet ('composite' multiferroic) superconductor/ferromagnet (proximity effect) dilute magnetic semiconductor/ferromagnet topological insulator/ferromagnet

resolve interaction at relevant length scale correlate with structure/chemistry of interface

Fundamental research but close link to applications!

PNR: two fundamental interactions

Polarized neutron reflectivity (PNR)

See also V. Lauter et al. in e.g. PRL 89, 167203 (2002); PRB 83, 174418 (2011)

Exchange bias effect

KU LEUVEN

- W. H. Meiklejohn and C. P. Bean, Phys. Rev. **102**, 1413 (1956) J. Nogués and Ivan K. Schuller, JMMM 192 (1999)
- F. Radu and H. Zabel, Springer Tracts Mod. Phys. 227 1743 (2007)

Exchange Bias in thin films

Bilayer exchange bias system:

- Archetypal EB system: Co-CoO bilayers

S. Brems, D. Buntinx, K. Temst, C. Van Haesendonck, F. Radu, H. Zabel, PRL 95, 157202 (2005)

Asymmetry in reversal

Asymmetry between 1st (domain wall nucleation and motion) and 2nd (coherent rotation) magnetization reversals by magnetic field scans in PNR

KU LEUVEN

F. Radu et al., Phys. Rev. B 67, 134409 (2003) A. Paul et al., APL 95, 092502 (2009); APL 97, 032505 (2010)

Exchange Bias by ion implantation

Challenge: correlate magnetism with gradient in thin film, small area sample

KU LEUVEN

EB by ion implantation vs. bilayer

Bilayer system 30 nm Co film surface oxidation

100 nm Co film 1x10^{17 16}O at 60 keV

KU LEUVEN

FM/AFM interface

Bilayer system: planar interface between FM and AFM

Implanted system: interface between FM and AFM distributed throughout layer

→ magnetic depth profile? reversal mechanism ?
→ probe by polarized neutron reflectivity

E. Menéndez et al., ACS Appl. Mater. Interfaces 5, 4320 (2013)

Magnetic depth profile

KU LEUVEN

Polarized neutron reflectivity:

- chemical depth profile (like XRR) plus
- magnetic depth profile (vectorial)

J. Demeter et al., J. Phys. D: Appl. Phys. 45, 405004 (2012)

Magnetic depth profile

Magnetic depth profile correlates well with gaussian implantation profile

KU LEUVEN

J. Demeter et al., J. Phys. D: Appl. Phys. 45, 405004 (2012)

Best of both worlds: PNR and AMR Simultaneous measurement of PNR and AMR in reflectometer

Combination PNR-AMR solves several experimental issues !

KU LEUVEN

J. Demeter et. al., Rev. Sci. Instrum. 82, 033902 (2011)

Magnetization reversal mechanism

E. Menéndez et al., Phys. Rev. B 89, 144407 (2014)

Lateral patterns in 30 nm Co film

Combine ion implantation with UV-lithography

Magnetoresistance at room temperature: GMR mechanism

KU LEUVEN

E. Menéndez et al., Small (2016) – collaboration with UGent

Low temperature magnetoresistance

Nanotemplate patterns

Collab. with H.-G. Boyen, UHasselt

The future: wish list

- magnetic fields with precise control
- 2-axis sample holder (azimuthal)
- combination with magnetotransport
- ability to apply electric fields
- 1K 1000 K temperature range
- Easy switching (unpolarized/polarized, GISANS)
- measuring small samples (5 mm x 5 mm)
- 'plug and play' sample holders
- treatment of off-specular data
- further development of MBE/TEM (APT?)

Collaborators

- Enric Menéndez, Joost Demeter, Lino Pereira, André Vantomme KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium
- Dipak Paramanik, Chris Van Haesendonck KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium
- Andrew Wildes, Thomas Saerbeck
 Institut Laue-Langevin, Grenoble, France
- Thiago Dias, Julian Geshev Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- José Francisco Lopez-Barbera, Josep Nogués
 ICN2-Institut Català de Nanociència i Nanotecnologia, Bellaterra, Barcelona, Spain
 ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Anke Teichert, Roland Steitz Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
- A.S. Mohd, A. Koutsioumpas, E. Babcock, S. Mattauch MLZ, Garching, Germany
- Brian J. Kirby, Julie A. Borchers

NIST Center for Neutron Research, Gaithersburg, Maryland, USA

