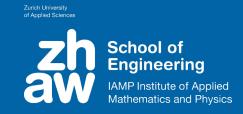


FBIS ConOps 14.05.2017

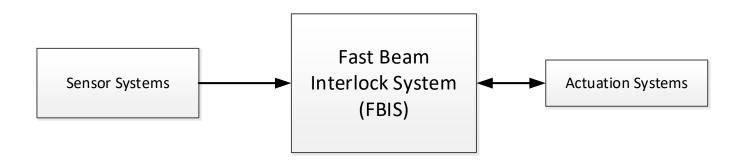
School of

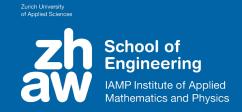
Engineering IAMP Institute of Applied Mathematics and Physics

Contents

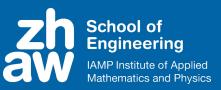

FBIS Role

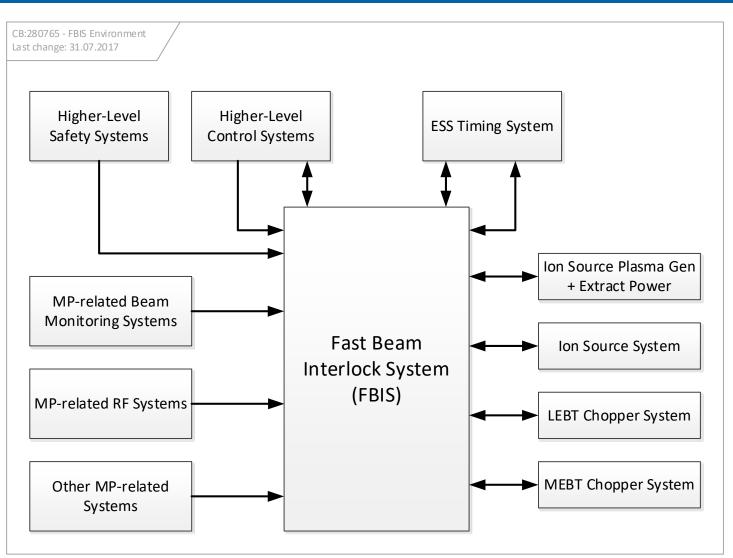
. . .


- General Behavior
 - Functions the FBIS performs
 - Resumption of Operation
 - Escalation, Checks
- Mode Confusion
 - Proton Beam Destination and Mode
 - "Enforced modes"
- Masking and other Functions
- Use Case: Beam Destination Change



- In Essence: FBIS constitutes the final link between the many MP-related systems and the MP-related Actuation Systems.
- "Safe" in the context of MP.


FBIS Role



- FBIS controls the MP-related Actuation Systems to achieve and maintain a safe state based on:
 - BEAM-PERMIT signals;
 - READY signals;
 - Proton Beam Destination and Proton Beam Mode of the machine;
 - "Mode" configuration of all relevant MP-related;
 - "No-beam detected" information from beam instrumentation systems;
 - Faraday-Cup and Emittance-Measurement-Unit positions,
 - Operational status and health status;


FBIS Role

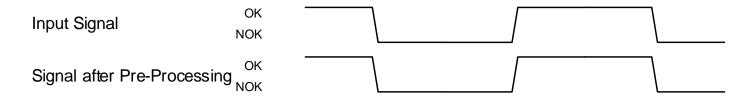
Zurich University of Applied Sciences



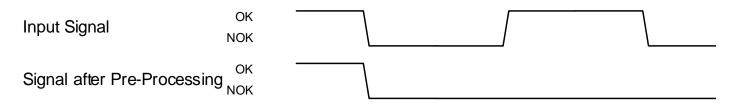
Approach

- Why a FBIS ConOps?
- ESS Hazard and Risk Analysis and definition of Protection Functions still under development
- No «formal User Requirements Specification» for the FBIS (Lastenheft)
- FBIS development guided by:
 - Benchmark Use Cases
 - Driving Requirements
 - Concept of Operation

Reaction of FBIS depends:

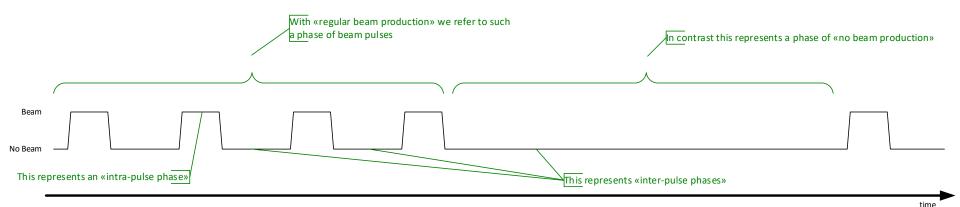

- a) on the configuration of the respective FBIS input
- b) on the status of the proton beam

Input Signal Latching


- FBIS Input can be configured to:
 - «no latching»: the signal is processed as detected at the FBIS input

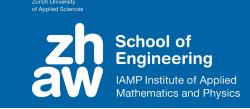
An FBIS input is configured to **No Latching**:

«latch NOK»: a NOK state is latched until an explicit reset occurs

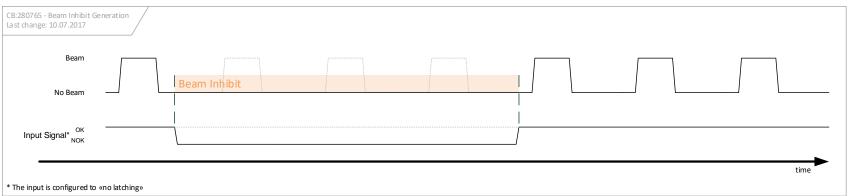

An FBIS input is configured to Latch NOK:

Beam Pulse Phase

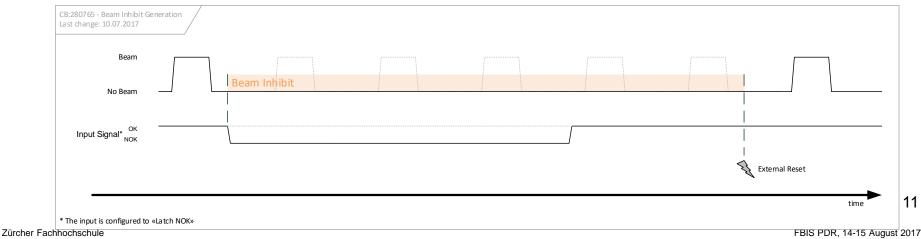
- The FBIS differentiates two beam pulse phase states:
 - Beam is Off (e.g. in between beam pulses) aka «inter-pulse phase»
 - Beam is On aka «intra-pulse phase»

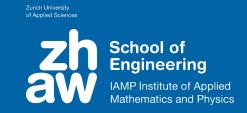

General FBIS Behavior

Zurich University of Applied Sciences

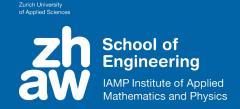


Proton Beam state	Configuration of the FBIS input	FBIS reaction to an Input signal in state NOK	
Inter-Pulse phase	No Latching (READY signal)	The FBIS carries out a "Beam Inhibit". The "Beam Inhibit" is <u>not</u> latched.	
	Latch NOK (BEAM-PERMIT signal)	The FBIS carries out a "Beam Inhibit". The "Beam Inhibit" <u>is</u> latched. The FBIS informs the ESS Timing System that the Beam Inhibit is latched.	
Intra-Pulse Phase	No Latching (READY signal)	The FBIS carries out a "Regular Beam Interlock". The "Regular Beam Interlock" is latched.	
	Latch NOK (BEAM-PERMIT signal)	The FBIS informs the ESS Timing System that the Regular Beam Interlock is latched.	

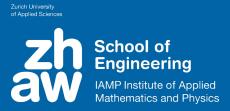

Beam Inhibit


 OK→NOK transition of input configured to «no latching» when there is no beam:

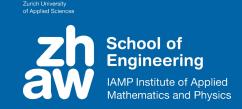
 OK→NOK transition of input configured to «latch NOK» when there is no beam:



- OK→NOK transition of input configured to «no latching» when there is beam:
- OK→NOK transition of input configured to «latch NOK» when there is beam:

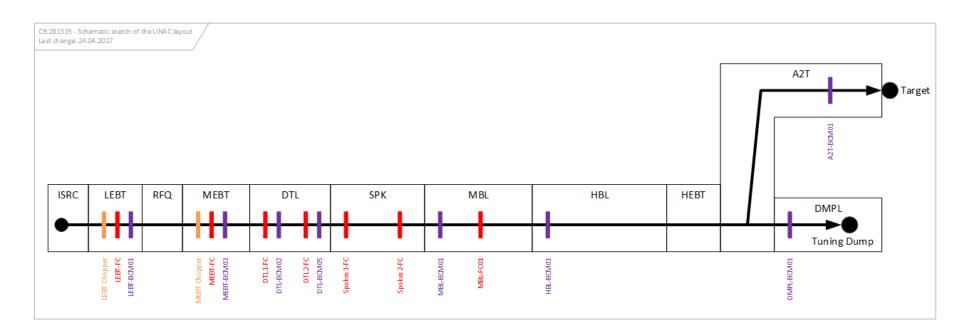

CB:280765 - Regular Beam In Last change: 10.07.2017	terlock Generation		/		
Beam No Beam		Regular Beam Interlock			
Input Signal ^{OK} NOK			 	 	External Reset
			 	~	time

Beam Inhibit Function


- When carrying out a "Beam Inhibit" the FBIS performs the following actions:
 - it inhibits the generation of further beam pulses by acting on the ESS Timing System;
 - it interrupts proton beam extraction by "interlocking" the proton source through a dedicated input of the Proton Source System.
 - in addition, it activates the LEBT and MEBT choppers as precaution, should the inhibit via ESS Timing System and proton source fail.

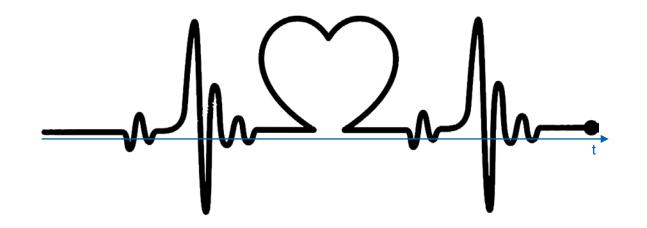
Regular and Emergency Beam Interlock


- When carrying out a "Regular Beam Interlock" (RBI) the FBIS performs the following actions:
 - it inhibits the generation of further beam pulses by acting on the ESS Timing System;
 - it interrupts proton beam extraction by "interlocking" the proton source through a dedicated input of the Proton Source System.
 - causes the proton beam to be dumped by activating the LEBT and MEBT choppers;
- When escalated to an "Emergency Beam Interlock" (EBI) the FBIS performs additionally the following actions:
 - cutting the power to the plasma generator of the Proton Source System and
 - cutting the power to the extraction system of the Proton Source System.



- FBIS checks for beam while in inter-pulse phase \rightarrow RBI
- FBIS checks for beam downstream of intermediate beam destinations → RBI
- FBIS checks if Beam Inhibit / Regular Beam Interlock was successful.
 - Based on beam presence information from BI
 - Based on status feedback of Actuation Systems
- → EBI

Configuration Confusion


- Configuration confusion considered to be big risk!
- ESS operation based on two «principal modes»
 - Proton Beam Destination

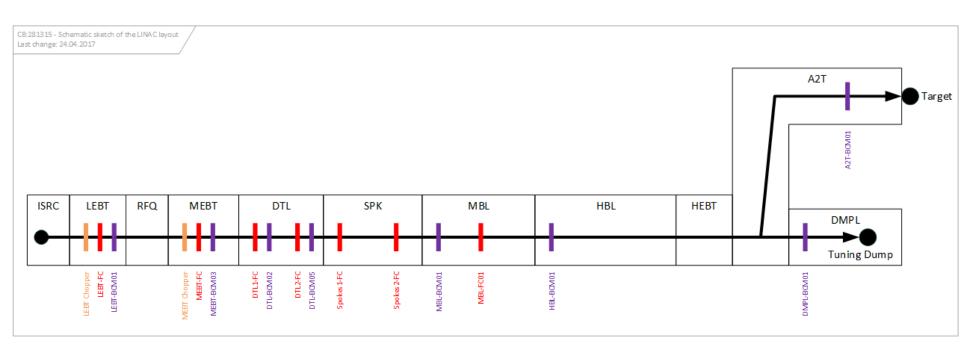
Configuration Confusion

- Configuration confusion considered to be big risk!
- ESS operation based on two «principal modes»
 - Proton Beam Destination
 - Proton Beam Mode

Enforced Proton Beam Destination

- We assume
 - FBIS knows Requested Proton Beam Destination from TS and Higher-Level Control System
 - FBIS knows from all relevant MP-related Systems which proton beam destination they enforce (LPSID, LPS-A2T, LPS-RF, ...)
- FBIS deduces «Enforced Proton Beam Destination»
- FBIS requests beam switch-off in case of missmatch

Enforced Proton Beam Mode



- We assume
 - FBIS knows Requested Proton Beam Mode from TS and Higher-Level Control System
 - FBIS knows from all relevant MP-related Systems which proton beam mode they are configured for (they enforce)
- FBIS deduces «Enforced Proton Beam Mode»
- FBIS requests beam switch-off in case of missmatch

FBIS Decision Logic is more than an AND

Logic is Proton Beam Destination dependent

However, logic is not changed based on "sensor information" only!

• FBIS inputs can be masked:


Masking Feature

CB:281315 - Masking Feature Last change: 28.02.2017					
We assume the FBIS Decision Logic directly maps an «Input Condition» to an «Output Condition»:					
The Input Condition is not	masked:				
Input Condition OK					
Output Condition OK					
The Input Condition is mas	sked to OK:				
Input Condition OK NOK					
Output Condition OK					
The Input Condition is masked to NOK:					
Input Condition ок NOK					
Output Condition OK					

Masking depends on rulesets

Convenience Functions

Zurich University of Applied Sciences

FBIS features «convenienve functions»

- Status and Diagnostic information
- Event Logging
- Software Beam-Permits
- ...
- Running in «Degraded Mode»

Use Case: Change Beam Destination from LEBT-FC to DTL-FC

Use Case

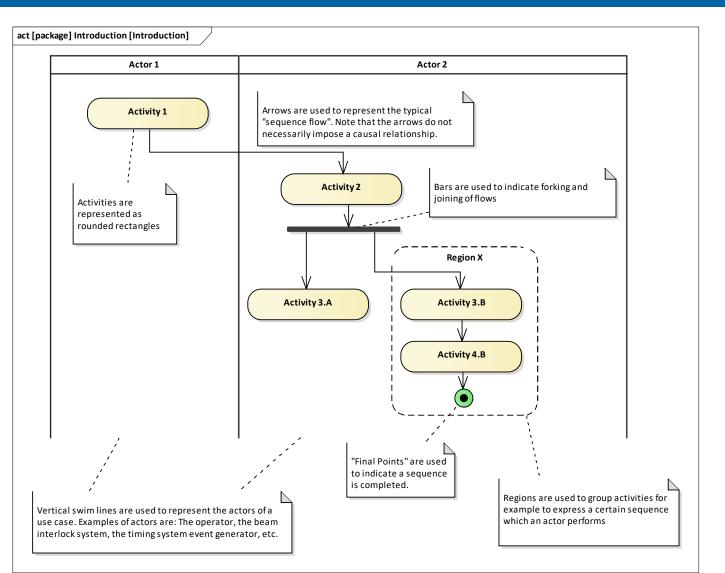
Status at start of use-case:

- beam is on and is captured by LEBT-01:PBI-FC-01 (in the use case referred to as LEBT-FC)
- Insert and extract permit for all ID's is NOK (no ID is moving)
- Gate Valves between LEBT-FC and DTL-FC are closed

Expected status at end of use case:

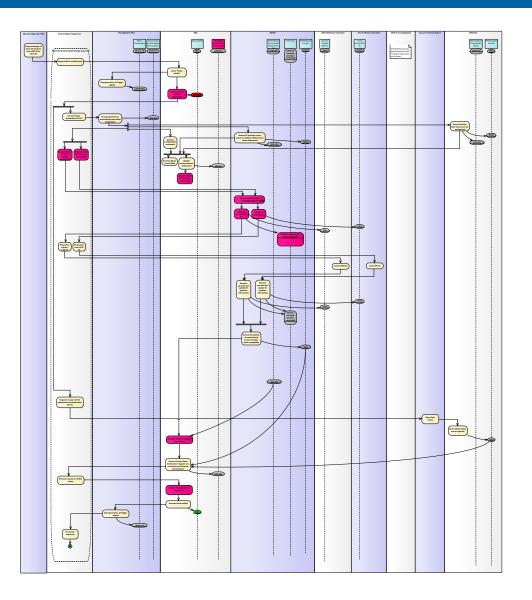
 beam is on and is captured by DTL-04:PBI-FC-01 (in the use case referred to as DTL-FC)

Assumptions:


 Handshaking between the Control System Sequencer and other systems is not explicitly modeled in this use case

- Operator/Operator HMI
- Control System Sequencer
- Timing System EVG
- FBIS
- MPSID
- LEBT-FC Motion Controller
- BCM Processing Board
- Vacuum Interlock System (actually more a control system)
- MPSVAC

Use Case – Graphical Representation


School of

Engineering

Use Case

Zurich University of Applied Sciences

Zürcher Fachhochschule

For more information see document:

FBIS_ConceptOfOperation

Contact:

Martin Rejzek <u>martin.rejzek@zhaw.ch</u>

http://www.iamp.zhaw.ch/sks